Imaging/Histopathology Core. This core has had excellent productivity for the past five years of support. Numerous investigators have used the core, increased their collaborative efforts, and have greatly increased their own productivity. Because a major strength of this Core grant is publications, a list of 170 of 215 total for years 2008-2012 years of funding for this Core grant is provided (See Appendix, Publications) to concretely demonstrate the activity, and collaborative efforts for vision research made possible by this facility at WSU. Eighteen investigators (12 with 15 NEI. ROl grants) utilized the facility. Seven utilized the l/H core extensively, nine moderately and 2 had limited usage. Table 2 lists past investigators, and their degree of usage. Annual detailed reports submitted to the NEI fully document the past progress and collaborative efforts enhanced by this core also and are available for each year of P30 funding. Therefore, the following section only briefly highlights some of the studies that have been facilitated by this core either by use of its equipment and/or research personnel. The l/H core is integral to NEI funded studies and has also, albeit at lower priority, assisted more junior vision investigators with pilot studies (e.g., Drs. Huang, Singh, Kumar, Thummel and Tkatchenko). Specifically, the core has assisted in studies on: comparative histological analyses and ultra-high resolution MRI of retina; histopathological studies of new orthotopic models of choroidal melanoma;in situ hybridization against the segmentation gene wingless;paraffin embedment and sectioning of retinas and corneas for immunolabeling; slit lamp of normal and infected mouse and rat eyes;the immunochemical and histological characterization of transgenic mouse retinas by light and electron microscopy;studies of human type-2 diabetes in a rat model; histopathological evaluation of retinal ischemia models;histopathology of recombinant protein and antibody neutralized mice;characterization of cytokine knockout vs. wild-type mice in P. aeruginosa keratitis, with focus on growth factors, their receptors and modulation of Toll-like receptors;confocal microscopic dual immunolabeling for VIP and macrophage expression of its receptor;transmission EM of RNAi knockdown in grasshopper eyes for analysis of gene function during postembryonic retinal development;bacterial flagellin studies in P. aeruginosa keratitis;training of research personnel in cryosectioning, confocal laser scanning microscopy and use of the Apotome and Leica microscopes as well as poster printing and assistance with graphics for publications. For all of these studies and many others not included here, this core and its research assistants, Ronald Barrett and Norbert Wolf, provided excellent technical expertise. Concrete evidence of this support from 2008- 2012, is reflected by the list of 170 representative papers shown of a total of 215. In this regard, 142 of the 215 publications had assistance from this facility. In addition, another 33 papers (of 215 total) had assistance from both the l/H and Tc/Mol core, described below. (See Appendix, Publications).

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Center Core Grants (P30)
Project #
2P30EY004068-31A1
Application #
8877732
Study Section
Special Emphasis Panel (ZEY1-VSN (03))
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
31
Fiscal Year
2014
Total Cost
$230,762
Indirect Cost
$79,360
Name
Wayne State University
Department
Type
DUNS #
001962224
City
Detroit
State
MI
Country
United States
Zip Code
48202
Li, Cui; McClellan, Sharon A; Barrett, Ronald et al. (2014) Interleukin 17 regulates Mer tyrosine kinase-positive cells in Pseudomonas aeruginosa keratitis. Invest Ophthalmol Vis Sci 55:6886-900
Hazlett, Linda D; Jiang, Xiaoyu; McClellan, Sharon A (2014) IL-10 function, regulation, and in bacterial keratitis. J Ocul Pharmacol Ther 30:373-80
Jiang, Xiaoyu; McClellan, Sharon A; Barrett, Ronald et al. (2014) HGF signaling impacts severity of Pseudomonas aeruginosa keratitis. Invest Ophthalmol Vis Sci 55:2180-90
Ivanova, Elena; Lee, Patrick; Pan, Zhuo-Hua (2013) Characterization of multiple bistratified retinal ganglion cells in a purkinje cell protein 2-Cre transgenic mouse line. J Comp Neurol 521:2165-80
Lu, Qi; Ivanova, Elena; Ganjawala, Tushar H et al. (2013) Cre-mediated recombination efficiency and transgene expression patterns of three retinal bipolar cell-expressing Cre transgenic mouse lines. Mol Vis 19:1310-20
Deng, Qiuchan; Sun, Mingxia; Yang, Kun et al. (2013) MRP8/14 enhances corneal susceptibility to Pseudomonas aeruginosa Infection by amplifying inflammatory responses. Invest Ophthalmol Vis Sci 54:1227-34
Foldenauer, Megan E B; McClellan, Sharon A; Berger, Elizabeth A et al. (2013) Mammalian target of rapamycin regulates IL-10 and resistance to Pseudomonas aeruginosa corneal infection. J Immunol 190:5649-58
Devi, Takhellambam S; Hosoya, Ken-Ichi; Terasaki, Tetsuya et al. (2013) Critical role of TXNIP in oxidative stress, DNA damage and retinal pericyte apoptosis under high glucose: implications for diabetic retinopathy. Exp Cell Res 319:1001-12
Thomas, Jennifer L; Thummel, Ryan (2013) A novel light damage paradigm for use in retinal regeneration studies in adult zebrafish. J Vis Exp :e51017
Singh, Lalit P (2013) Thioredoxin Interacting Protein (TXNIP) and Pathogenesis of Diabetic Retinopathy. J Clin Exp Ophthalmol 4:

Showing the most recent 10 out of 274 publications