-SPECTROSCOPIC AND BIOIMAGING CORE The Redox Biology Center's (RBC's) Spectroscopy and Bioimaging Core (Core B) provides an array of tools for investigators to acquire quantitative descriptions of protein structure and dynamics, kinetics, ligand binding, metal analysis, and interactions with other biological macromolecules. The Core, as evidenced by the fact it provided support for numerous extramural grant awards and contributed to 179 publications by RBC members during the Phase I and II funding cycles, has had a tremendous impact on the research output of the Center. The Spectroscopy and Bioimaging Core is comprised of three main service branches that support RBC investigators and their collaborators, as well as other academic and industrial researchers across Nebraska and the region. The three components of the Core are: 1) instrumentation for studies of protein structure, dynamics, thermodynamics, kinetics, and elemental analysis;2) microscopy bioimaging;and 3) electron paramagnetic resonance (EPR) spectroscopy. This proposal request funds to support the Spectroscopy and Bioimaging Core toward achieving its Phase III aims, which are to: 1) maintain and provide state-of-the-art spectroscopy and bioimaging instrumentation and technical services to RBC investigators and non-RBC members and investigators outside the University of Nebraska system;2) provide preliminary data and analysis to assist in the success of RBC grant proposal submissions and train/educate RBC faculty and students in spectroscopic and bioimaging methods;and 3) facilitate research collaborations between RBC investigators and non-RBC scientists within (as well as outside of) the University of Nebraska system. During Phase II, the RBC significantly increased the research capacity in the Core, which has moved the RBC forward on a trajectory toward become a self-sustainable Center. The momentum of the Spectroscopy and Bioimaging Core has largely been sustained through major institutional support, which has enabled the RBC to acquire new equipment such as the inductively coupled plasma mass spectrometer, stopped-flow kinetics instrument, and EPR spectrometer. Long-term sustainability of the Core will be achieved by: 1) maintaining a substantial academic user base of well-funded investigators;2) supporting strategic collaborations and providing services to industry;and 3) through continued institutional support.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZRR1-RI-B)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Nebraska Lincoln
United States
Zip Code
Lieber, Dillon J; Catlett, Jennifer; Madayiputhiya, Nandu et al. (2014) A multienzyme complex channels substrates and electrons through acetyl-CoA and methane biosynthesis pathways in Methanosarcina. PLoS One 9:e107563
Zhang, Yuping; Nandakumar, Renu; Bartelt-Hunt, Shannon L et al. (2014) Quantitative proteomic analysis of the Salmonella-lettuce interaction. Microb Biotechnol 7:630-7
Spencer, Andrea L M; Bagai, Ireena; Becker, Donald F et al. (2014) Protein/protein interactions in the mammalian heme degradation pathway: heme oxygenase-2, cytochrome P450 reductase, and biliverdin reductase. J Biol Chem 289:29836-58
Powers, Robert (2014) The current state of drug discovery and a potential role for NMR metabolomics. J Med Chem 57:5860-70
Lei, Shulei; Zavala-Flores, Laura; Garcia-Garcia, Aracely et al. (2014) Alterations in energy/redox metabolism induced by mitochondrial and environmental toxins: a specific role for glucose-6-phosphate-dehydrogenase and the pentose phosphate pathway in paraquat toxicity. ACS Chem Biol 9:2032-48
Ledala, Nagender; Zhang, Bo; Seravalli, Javier et al. (2014) Influence of iron and aeration on Staphylococcus aureus growth, metabolism, and transcription. J Bacteriol 196:2178-89
Singh, Harkewal; Arentson, Benjamin W; Becker, Donald F et al. (2014) Structures of the PutA peripheral membrane flavoenzyme reveal a dynamic substrate-channeling tunnel and the quinone-binding site. Proc Natl Acad Sci U S A 111:3389-94
Nandakumar, Renu; Talapatra, Kesh (2014) Quantitative profiling of bacteriocins present in dairy-free probiotic preparations of Lactobacillus acidophilus by nanoliquid chromatography-tandem mass spectrometry. J Dairy Sci 97:1999-2008
Thomas, Vinai Chittezham; Sadykov, Marat R; Chaudhari, Sujata S et al. (2014) A central role for carbon-overflow pathways in the modulation of bacterial cell death. PLoS Pathog 10:e1004205
Luo, Min; Christgen, Shelbi; Sanyal, Nikhilesh et al. (2014) Evidence that the C-terminal domain of a type B PutA protein contributes to aldehyde dehydrogenase activity and substrate channeling. Biochemistry 53:5661-73

Showing the most recent 10 out of 21 publications