METABOLOMICS AND PROTEOMICS CORE ABSTRACT The Redox Biology Center (RBC) has combined expertise in mass spectrometry (MS) and nuclear magnetic resonance (NMR) to uniquely meet the metabolomic and proteomic needs of RBC members. The central goal of the RBC's Metabolomics and Proteomics Core (Core A) is to provide support for multiple RBC research projects that benefit from the inclusion of MS proteomics/metabolomics and NMR metabolomics. The Core also strives to support research projects involving investigators outside the RBC and conduct research with industrial partners. The Metabolomics and Proteomics Core is having a tremendous impact on publications and extramural grant applications and will continue to play a critical role in the research of RBC investigators in Phase III. In response to the needs of RBC investigators, the RBC proposes to build a research service in the Metabolomics and Proteomics Core that is dedicated to quantitative measurements of key redox markers. The main services provided by the Metabolomics and Proteomics Core in the Phase III funding cycle will be: 1) MS-based target metabolite measurements, protein identification, PTMs, and global proteomic profiling;2) NMR-based profiling of metabolic flux in cells (bacterial to mammalian);and 3) measurement of cellular redox status and oxidative stress. To continue providing these services and to support the overall aims of the RBC, funds are requested to support the Metabolomics and Proteomics Core in achieving its four specific aims: 1) maintain instrumentation, further develop MS- and NMR-based methods, and provide technical support to aid the RBC and scientific community at large in metabolomics and proteomics research;2) establish a research service arm of the Core that capitalizes on the state-of-the-art MS equipment and is dedicated to providing robust analytical methods for quantifying oxidative stress markers and redox status;3) provide preliminary data and analysis to assist in the success of RBC grant proposal submissions, train/educate RBC faculty and students in MS and NMR methods;4) facilitate collaborations with RBC and outside researchers by expanding support to projects that will benefit by incorporating metabolomic/proteomic approaches. Core success has been bolstered by major investments by UNL, including funds to support the acquisition of a Bruker SolariX 70 Hybrid FTMS System. This instrument is now part of the Core and provides outstanding flexibility in its application and is enabling the Core to expand its research capabilities. The comprehensive operational plan of the Metabolomics and Proteomics Core coupled with UNL's continued support will ensure the long-term sustainability the Core.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZRR1-RI-B)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Nebraska Lincoln
United States
Zip Code
Lieber, Dillon J; Catlett, Jennifer; Madayiputhiya, Nandu et al. (2014) A multienzyme complex channels substrates and electrons through acetyl-CoA and methane biosynthesis pathways in Methanosarcina. PLoS One 9:e107563
Zhang, Yuping; Nandakumar, Renu; Bartelt-Hunt, Shannon L et al. (2014) Quantitative proteomic analysis of the Salmonella-lettuce interaction. Microb Biotechnol 7:630-7
Spencer, Andrea L M; Bagai, Ireena; Becker, Donald F et al. (2014) Protein/protein interactions in the mammalian heme degradation pathway: heme oxygenase-2, cytochrome P450 reductase, and biliverdin reductase. J Biol Chem 289:29836-58
Powers, Robert (2014) The current state of drug discovery and a potential role for NMR metabolomics. J Med Chem 57:5860-70
Lei, Shulei; Zavala-Flores, Laura; Garcia-Garcia, Aracely et al. (2014) Alterations in energy/redox metabolism induced by mitochondrial and environmental toxins: a specific role for glucose-6-phosphate-dehydrogenase and the pentose phosphate pathway in paraquat toxicity. ACS Chem Biol 9:2032-48
Ledala, Nagender; Zhang, Bo; Seravalli, Javier et al. (2014) Influence of iron and aeration on Staphylococcus aureus growth, metabolism, and transcription. J Bacteriol 196:2178-89
Singh, Harkewal; Arentson, Benjamin W; Becker, Donald F et al. (2014) Structures of the PutA peripheral membrane flavoenzyme reveal a dynamic substrate-channeling tunnel and the quinone-binding site. Proc Natl Acad Sci U S A 111:3389-94
Nandakumar, Renu; Talapatra, Kesh (2014) Quantitative profiling of bacteriocins present in dairy-free probiotic preparations of Lactobacillus acidophilus by nanoliquid chromatography-tandem mass spectrometry. J Dairy Sci 97:1999-2008
Thomas, Vinai Chittezham; Sadykov, Marat R; Chaudhari, Sujata S et al. (2014) A central role for carbon-overflow pathways in the modulation of bacterial cell death. PLoS Pathog 10:e1004205
Luo, Min; Christgen, Shelbi; Sanyal, Nikhilesh et al. (2014) Evidence that the C-terminal domain of a type B PutA protein contributes to aldehyde dehydrogenase activity and substrate channeling. Biochemistry 53:5661-73

Showing the most recent 10 out of 21 publications