The goal of this core is to assist investigators with state-of-the-art technologies for 3-D tissue analysis and stereology. This core is the logical progression of the Molecular Neurobiology core, but now allows quantitation and analysis of cellular and molecular markers in tissue in 3-D. The LSUHSC-NCE has made a commitment to continue to capitalize, build, equip, and staff an Imaging Core Facility with state-of-the-art confocal and stereology microscopes and computers that can be used by the NCE and researchers from the surrounding biomedical community. It provides the technology and personnel to assist researchers in the preparation, embedding, sectioning, labeling, and contrast enhancement of tissue samples. Also with this technology, we can create 3-D images by reconstructing objects from optical or physical sections in 3-dimensions, archive this data, and quantitate them with state-of-the art microscopy and stereology software. This core will be of great help to newly hired NCE PI's as they initiate their research programs, and other researchers in different departments at LSUHSC, Tulane, and Xavier who need state-of-the-art imaging and stereology but don't have the resources or experience. This core will enable greater collaborations through imaging interactions, and additional R01, P50, and T32 grant applications. This facility will greatly sustain both the research community at LSUHSC and the greater New Orleans area. Starting in year 4, we will gradually transition to a fee-for-service facility so that by the end of the Sustainability Plan period this core would be fully self sustaining and independent. The three specific aims of this core are to: 1) hire and train a PhD level scientist to run this core and provide a graduate level seminar entitled: """"""""Principles and Practice of Stereology and Confocal Microscopy"""""""";2) enable researchers to implement stereologic quantitation and whole-slide scanning using the new Olympus VS110 microscope and Visiopharm stereology software;and 3) operate the core to actualize COBRE Phase III project goals, and provide assistance to researchers and their projects throughout the process of design and implementation of 3-D confocal imaging.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZRR1-RI-B)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Louisiana State Univ Hsc New Orleans
New Orleans
United States
Zip Code
Pham, Thang Luong; He, Jiucheng; Kakazu, Azucena H et al. (2017) Defining a mechanistic link between pigment epithelium-derived factor, docosahexaenoic acid, and corneal nerve regeneration. J Biol Chem 292:18486-18499
Lin, Eric C; Combe, Crescent L; Gasparini, Sonia (2017) Differential Contribution of Ca2+-Dependent Mechanisms to Hyperexcitability in Layer V Neurons of the Medial Entorhinal Cortex. Front Cell Neurosci 11:182
He, Jiucheng; Pham, Thang Luong; Kakazu, Azucena et al. (2017) Recovery of Corneal Sensitivity and Increase in Nerve Density and Wound Healing in Diabetic Mice After PEDF Plus DHA Treatment. Diabetes 66:2511-2520
Belayev, Ludmila; Mukherjee, Pranab K; Balaszczuk, Veronica et al. (2017) Neuroprotectin D1 upregulates Iduna expression and provides protection in cellular uncompensated oxidative stress and in experimental ischemic stroke. Cell Death Differ 24:1091-1099
Alapure, Bhagwat V; Lu, Yan; Peng, Hongying et al. (2017) Surgical Denervation of Specific Cutaneous Nerves Impedes Excisional Wound Healing of Small Animal Ear Pinnae. Mol Neurobiol :
Jun, Bokkyoo; Mukherjee, Pranab K; Asatryan, Aram et al. (2017) Elovanoids are novel cell-specific lipid mediators necessary for neuroprotective signaling for photoreceptor cell integrity. Sci Rep 7:5279
Bhattacharjee, Surjyadipta; Jun, Bokkyoo; Belayev, Ludmila et al. (2017) Elovanoids are a novel class of homeostatic lipid mediators that protect neural cell integrity upon injury. Sci Adv 3:e1700735
He, Jiucheng; Cosby, Richard; Hill, James M et al. (2017) Changes in Corneal Innervation after HSV-1 Latency Established with Different Reactivation Phenotypes. Curr Eye Res 42:181-186
Asatryan, Aram; Bazan, Nicolas G (2017) Molecular mechanisms of signaling via the docosanoid neuroprotectin D1 for cellular homeostasis and neuroprotection. J Biol Chem 292:12390-12397
Canavier, Carmen C; Tikidji-Hamburyan, Ruben A (2017) Globally attracting synchrony in a network of oscillators with all-to-all inhibitory pulse coupling. Phys Rev E 95:032215

Showing the most recent 10 out of 73 publications