Core A is the Administrative Core forthe Phase III COBRE: Smooth Muscle Plasticity. COBRE programs are complicated by the fact that several moving parts must be coordinated to accomplish the goals ofthe program. The main goal of this Phase III is to support the services of 2 scientific Core facilities that are essential to the funded research of the smooth muscle biology group at UNR. Several projects would be serverly limited by loss of function of the FACS and Flow Cytometry Core and the Single Cell Molecular Expression Core (Core B&C ofthe Phase III COBRE). Thus, sustaining the function and quality of these Cores is paramount to retention and growth ofthe Research Base in the COBRE thematic focus. We will also conduct a Pilot Grant Program that will allow many other research projects within the University and potentially within the State of Nevada to benefit from Core technologies. We will also partner with other IDeA programs at UNR to extend the functions of the Core laboratories and share personnel and expertise. Core A will lead the Phase III by seeking to achieve the following specific aims, i) Build and secure Core technologies and excellence of service. Use Phase III to leverage University, State and commercial resources to further enhance Core utilization, technology and service, ii) Insure Core sustainability through enhancement of utilization and quality of services, iii) Maintain vibrant and effective mentoring of junior faculty to help them obtain extramural funding and augment career potential. Build technical capabilities of junior faculty by providing access to Cores through the Pilot Grant Program, iv) Provide regular evaluation of Phase III activities and services. Integrate assessments from users, Core directors. Internal Steering Committee, and External Advisory Committee. Develop Action Plans based on evaluations to remedy less than optimal performance and/or service, v) Provide all required reporting for Phase III activities to maintain compliance with University, State and Federal regulations. The Smooth Muscle Plasticity COBRE at UNR has had many scientific and career development successes since it inception. Core A will maintain the trajectory of success in the Phase III, creating dynamic, sustainable scientific Cores for UNR.

Public Health Relevance

Core A will administrate the Phase III ofthe Center of Biomedical Research Excellence: Smooth muscle plasticity at the University of Nevada. Phase III will develop and make sustainable 2 scientific cores essential to the further development of the thematic focus of the center. Core A will also oversee a Pilot Research Program designed to help other investigators develop expertise and pilot data using the Cores.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Nevada Reno
United States
Zip Code
Zhang, Xudong; Cozen, Aaron E; Liu, Ying et al. (2016) Small RNA Modifications: Integral to Function and Disease. Trends Mol Med 22:1025-1034
Scurry, Alexandra N; Heredia, Dante J; Feng, Cheng-Yuan et al. (2016) Structural and Functional Abnormalities of the Neuromuscular Junction in the Trembler-J Homozygote Mouse Model of Congenital Hypomyelinating Neuropathy. J Neuropathol Exp Neurol 75:334-46
Perrino, Brian A (2016) Calcium Sensitization Mechanisms in Gastrointestinal Smooth Muscles. J Neurogastroenterol Motil 22:213-25
Yuan, Shuiqiao; Schuster, Andrew; Tang, Chong et al. (2016) Sperm-borne miRNAs and endo-siRNAs are important for fertilization and preimplantation embryonic development. Development 143:635-47
Heredia, Dante J; Schubert, Douglas; Maligireddy, Siddhardha et al. (2016) A Novel Striated Muscle-Specific Myosin-Blocking Drug for the Study of Neuromuscular Physiology. Front Cell Neurosci 10:276
Peri, Lauren E; Koh, Byoung H; Ward, Grace K et al. (2015) A novel class of interstitial cells in the mouse and monkey female reproductive tracts. Biol Reprod 92:102
Lee, Haeyeong; Koh, Byoung H; Yamasaki, Evan et al. (2015) UTP activates small-conductance Ca2+-activated K+ channels in murine detrusor PDGFRα+ cells. Am J Physiol Renal Physiol 309:F569-74
Berner, Vanessa K; duPre, Sally A; Redelman, Doug et al. (2015) Microparticulate β-glucan vaccine conjugates phagocytized by dendritic cells activate both naïve CD4 and CD8 T cells in vitro. Cell Immunol 298:104-14
Yuan, Shuiqiao; Qin, Weibing; Riordan, Connor R et al. (2015) Ubqln3, a testis-specific gene, is dispensable for embryonic development and spermatogenesis in mice. Mol Reprod Dev 82:266-7
Oliver, Daniel; Yuan, Shuiqiao; McSwiggin, Hayden et al. (2015) Pervasive Genotypic Mosaicism in Founder Mice Derived from Genome Editing through Pronuclear Injection. PLoS One 10:e0129457

Showing the most recent 10 out of 13 publications