Rationale: Biomedical research at the present time is dominated by the paradigm of linking genes and environment to function. Recent advances in human genetics through genome-wide association analyses have greatly accelerated the disease gene discovery process. However, in this post-genome sequencing era, we are faced with the challenge of determining the cellular and organismal functions of these genes and how gene dysfunction leads or contributes to the phenotype of the disease (i.e. functional genomics). In the past, most functional genomics work was carried out through using genetic manipulations to build animal models that carry the same mutations in genes as in human diseases. However, this approach is often laborious and, more importantly, how much of the human disease can be recapitulated in those animal models remains a huge uncertainty. However, until recently, no viable alternative approaches were available. The establishment of human pluripotent embryonic stem cells (hESCs) and human induced pluripotent stem cells (h-iPSCs) is beginning to revolutionize the way to approach functional genomics, disease modeling, disease mechanistic studies, drug screening, and development of novel therapeutic interventions. Particularly, with iPSC technology, where patient-specific cells are utilized as research objects, we are finally able to utilize the genetic manipulations that nature has already generated, as well as taking into account the enormous genetic predispositions/variations that exist in the population, to develop population stratified or even personalized effective therapies. To utilize this expanding technology, IDDRC investigators have expressed the need for centralized expertise, coordination, and help with stem cell/iPSC generation, maintenance, lineage differentiation, and standardization, with the aims of building novel cellular and molecular models relevant to IDD. A strong internal consensus within the UCLA IDDRC community about the importance of these cells has become the driving force for the establishing of this new Stem Cell Core, and we have all the required expertise in place at UCLA to provide such a sen/ice. A number of IDDRC investigators are studying pediatric brain tumors with the goal of alleviating the mortality and developmental disability associated with them. In an analogous fashion to the explosion in knowledge of the genotype/phenotype relationship in genetically-based developmental disorders, similar breakthroughs are being made in the study of cancer. The Cancer Genome Atlas (TCGA) project is delineating the spectrum of mutations present in human brain tumors (http://cancergenome.nih.gov/), and there has been a large increase in the understanding of oncogenic pathways in brain tumors. However, similar to genetic developmental disorders, the study of pediatric brain tumors has been hampered by the lack of appropriate in vitro models. The recent discovery of stem cell-like cells in brain tumors (Hemmati et al., 2003), including pediatric brain tumors and the ability to propagate these highly relevant, tumorigenic cultures permits the study of molecular processes that drive these cells, the correlation of genotype and phenotype, and the development of novel potential therapies. The purpose of this new Core is to provide excellent technical support and expertise in the generation, characterization, maintenance, expansion, and lineage differentiation of human pluripotent stem cells including primarily IPSCs from patients as well as previously established hESCs (as controls and for comparative studies). In addition, due to the additional joint interest among our IDDRC investigators on brain tumors, methodologies of growing brain tumor stem cells, together with prepared tumor stem cell cultures from resected tumor specimens will also be provided by the core. In addition to the rationale outlined above, there are additional reasons for establishing a Stem Cell Core within the IDDRC. Previously, based on the consensus among scientists conducting hESC work, researchers worid-wide submitted RNA samples from their brew of cultured hESCs and a large scale gene expression array analysis was carried out. The results indicated that the most important element that accounts for variation among the different samples depended upon who had been handling the cells. Different investigators handle cells differently, which probably changed the molecular/cellular properties of the cells. Therefore, a centralized effort for stem cell production, characterization, maintenance, and expansion is very beneficial for subsequent research. This Core will provide standardization and quality control of the cells to ensure reproducibility and stability of the cell sources. In addition, based on many years of experience in studying neural stem cell (NSC), differentiation from various sources including NSCs derived from developing mouse, rat, and human embryos and adult, NSCs derived from mouse and human ESCs, as well as NSCs derived from mouse and human iPSCs, Drs. Sun and Zeng are well-situated to provide expertise concerning how to effectively differentiate human iPSCs and human ESCs first into expandable NSCs, and then subsequently into functional neurons that form synaptic network and glial cells (i.e., astrocytes and oligodendrocytes). Finally, Dr. Kornblum is among the earliest investigators studying brain tumor stem cells. He and Dr. Le Belle are very familiar with the sample (brain tumor) collection as well as the subsequent derivation of brain tumor stem cell cultures. It would be difficult for an average scientist in the IDDRC to interact with the clinicians and to have access to clinical samples in a regulated manner. Drs. Kornblum and Le Belle represent an enormous resource for the IDDRC community and will be able to handle the technical or scientific issues related to brain tumor stem cells, as well as distribution of brain tumor stem cells for many types of studies.

National Institute of Health (NIH)
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZHD1-MRG-C)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Los Angeles
United States
Zip Code
Yvone, Griselda M; Zhao-Fleming, Hannah H; Udeochu, Joe C et al. (2017) Disabled-1 dorsal horn spinal cord neurons co-express Lmx1b and function in nociceptive circuits. Eur J Neurosci 45:733-747
Ago, Yukio; Hayata-Takano, Atsuko; Kawanai, Takuya et al. (2017) Impaired extinction of cued fear memory and abnormal dendritic morphology in the prelimbic and infralimbic cortices in VPAC2 receptor (VIPR2)-deficient mice. Neurobiol Learn Mem 145:222-231
Condro, Michael C; Matynia, Anna; Foster, Nicholas N et al. (2016) High-resolution characterization of a PACAP-EGFP transgenic mouse model for mapping PACAP-expressing neurons. J Comp Neurol 524:3827-3848
Espinosa-Jeffrey, Araceli; Blanchi, Bruno; Biancotti, Juan Carlos et al. (2016) Efficient Generation of Viral and Integration-Free Human Induced Pluripotent Stem Cell-Derived Oligodendrocytes. Curr Protoc Stem Cell Biol 38:2D.18.1-2D.18.27
Krityakiarana, Warin; Zhao, Paul M; Nguyen, Kevin et al. (2016) Proof-of Concept that an Acute Trophic Factors Intervention After Spinal Cord Injury Provides an Adequate Niche for Neuroprotection, Recruitment of Nestin-Expressing Progenitors and Regeneration. Neurochem Res 41:431-49
Abad, Catalina; Jayaram, Bhavaani; Becquet, Laurine et al. (2016) VPAC1 receptor (Vipr1)-deficient mice exhibit ameliorated experimental autoimmune encephalomyelitis, with specific deficits in the effector stage. J Neuroinflammation 13:169
Espinosa-Jeffrey, Araceli; Nguyen, Kevin; Kumar, Shalini et al. (2016) Simulated microgravity enhances oligodendrocyte mitochondrial function and lipid metabolism. J Neurosci Res 94:1434-1450
Krityakiarana, Warin; Zhao, Paul M; Nguyen, Kevin et al. (2016) Erratum to: Proof-of Concept that an Acute Trophic Factors Intervention After Spinal Cord Injury Provides an Adequate Niche for Neuroprotection, Recruitment of Nestin-Expressing Progenitors and Regeneration. Neurochem Res 41:1844
Khankan, Rana R; Griffis, Khris G; Haggerty-Skeans, James R et al. (2016) Olfactory Ensheathing Cell Transplantation after a Complete Spinal Cord Transection Mediates Neuroprotective and Immunomodulatory Mechanisms to Facilitate Regeneration. J Neurosci 36:6269-86
Ago, Yukio; Condro, Michael C; Tan, Yossan-Var et al. (2015) Reductions in synaptic proteins and selective alteration of prepulse inhibition in male C57BL/6 mice after postnatal administration of a VIP receptor (VIPR2) agonist. Psychopharmacology (Berl) 232:2181-9

Showing the most recent 10 out of 80 publications