G1. OBJECTIVES The overarching mission of the Animal Behavior (AB) Core is to assist investigators seeking to discover behavioral, physiological and metabolic phenotypes in diverse rodent models of intellectual and developmental disabilities. To achieve this mission, the Core performs studies in mice and rats to identify the functional alterations resulting from genetic, developmental or environmental manipulations that may impair neural and behavioral development. These include changes in developmental milestones, sensorimotor function, cognitive function, affective and social behaviors, feeding and activity patterns, body composition and/or, energy expenditure. Through collaborative efforts with the Neurogenomics (NGEN), Cellular and Molecular Imaging (CMI), Tissue Engineering and Reprogramming(TECR), Human Clinical Phenotyping (HCP) and Translational Neuroimaging (TNI) Cores, the consequences of defined genetic or physiological alterations in mice and rats are thoroughly characterized to determine their impact in the context of the measures most relevant and translatable to the human disease phenotype. The role of candidate molecules in relevant tissues, such as neurons, glia and skeletal muscle can be elucidated by thorough and definitive experimentation and screening in mouse and rat models. To enhance research capabilities specific to IDD-related projects, the IDDRC leadership has leveraged the resources of two existing Einstein Shared Resources to form the AB Core. These are the Rodent Behavioral Evaluation Core established by the Department of Neuroscience and headed by Dr. Gulinello, and the Animal Physiology Core developed by the Diabetes Research and Training Center and headed by Dr. Schwartz. The AB Core is designed to satisfy the diverse needs of all IDDRC investigators using awake, unrestrained rodents in their studies by providing state-of-the-art assessments of developmental cognitive and sensorimotor function, of affective, social and motivated behavior, and of whole body and brain metabolism. The structure of the core reflects the fact that advances in understanding the neurobiology of IDD increasingly require not only classical measures of cognitive, motivated and sensorimotor functions, but must also include assessments of nutritional, metabolic and feeding-related behaviors, that together determine the functional profile of the subject and interact with the gentoype and pharmacological interventions. By combining existing Core capabilities and experienced faculty from the Departments of Neuroscience and Medicine, we have established an Animal Behavior Core uniquely suited to plan, perform and evaluate coordinated behavioral and metabolic assessments in developing and adult rodents.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Center Core Grants (P30)
Project #
5P30HD071593-03
Application #
8507791
Study Section
Special Emphasis Panel (ZHD1-DSR-Y)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
3
Fiscal Year
2013
Total Cost
$125,047
Indirect Cost
$50,168
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Goldman, Sylvie; DeNigris, Danielle (2015) Parents' strategies to elicit autobiographical memories in autism spectrum disorders, developmental language disorders and typically developing children. J Autism Dev Disord 45:1464-73
Hahn, Noemi; Foxe, John J; Molholm, Sophie (2014) Impairments of multisensory integration and cross-sensory learning as pathways to dyslexia. Neurosci Biobehav Rev 47:384-92
Negoro, Hiromitsu; Urban-Maldonado, Marcia; Liou, Louis S et al. (2014) Pannexin 1 channels play essential roles in urothelial mechanotransduction and intercellular signaling. PLoS One 9:e106269
Altschuler, Ted S; Molholm, Sophie; Butler, John S et al. (2014) The effort to close the gap: tracking the development of illusory contour processing from childhood to adulthood with high-density electrical mapping. Neuroimage 90:360-73
O'Guin, Kathleen N; Gruber, Ross C; Raine, Cedric S et al. (2014) Gas6 enhances axonal ensheathment by MBP+ membranous processes in human DRG/OL promyelinating co-cultures. ASN Neuro 6:e00135
Qureshi, Irfan A; Mehler, Mark F (2014) Epigenetic mechanisms underlying the pathogenesis of neurogenetic diseases. Neurotherapeutics 11:708-20
Liu, Xingyin; Greer, Christina; Secombe, Julie (2014) KDM5 interacts with Foxo to modulate cellular levels of oxidative stress. PLoS Genet 10:e1004676
Berko, Esther R; Suzuki, Masako; Beren, Faygel et al. (2014) Mosaic epigenetic dysregulation of ectodermal cells in autism spectrum disorder. PLoS Genet 10:e1004402
Nguyen, Giang D; Gokhan, Solen; Molero, Aldrin E et al. (2014) The role of H1 linker histone subtypes in preserving the fidelity of elaboration of mesendodermal and neuroectodermal lineages during embryonic development. PLoS One 9:e96858
Foxe, John J; Murphy, Jeremy W; De Sanctis, Pierfilippo (2014) Throwing out the rules: anticipatory alpha-band oscillatory attention mechanisms during task-set reconfigurations. Eur J Neurosci 39:1960-72

Showing the most recent 10 out of 48 publications