A2. JUSTIFICATION Dynamic Leadership: The primary function of the Administrative Core (ADM) is to provide strong consistent scientific leadership and to enunciate and execute a clear vision for the scientific direction of the Rose F. Kennedy IDDRC at Einstein. This will be achieved through active maintenance and constant re-evaluation of the six scientific Cores that provide the fundamental infrastructure of the center. The leadership will ensure prioritization of access to these Cores for IDDRC investigators, will consistently monitor Core utilization and cost-effectiveness, and ensure Core optimization and modernization through a system of continued evaluation and quality-control. The leadership will promote the activities and successes of the center and its investigators through dissemination of IDDRC work via our website, internal and external publications and dissemination through national media outlets. The leadership will coordinate and focus efforts around four identified thematic areas of IDD research strength. They will organize and manage a vibrant colloquium and mini-workshop series to promote investigator collaborations and community outreach. The leadership will administer a pilot grant program that will draw new investigators into the field of IDD research and provide seed funds for new innovative work from our established investigators. The Director, Dr. Walkley is an internationally recognized authority in IDD research with proven leadership skills and the requisite passion and determination to relentlessly advance and evolve the agenda of the IDDRC. He will take primary responsibility for executing this vision. He will consult with his associate director. Dr. Foxe, and leverage the collective expertise of his five key advisory committees to set a strong successful and vibrant agenda for the RFK-IDDRC. He will advocate at the highest levels of the college administration to guarantee the prominence of IDD research efforts at Einstein.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Center Core Grants (P30)
Project #
5P30HD071593-04
Application #
8734920
Study Section
Special Emphasis Panel (ZHD1-DSR-Y)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
4
Fiscal Year
2014
Total Cost
$278,158
Indirect Cost
$111,597
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Boudewyn, Lauren C; Sikora, Jakub; Kuchar, Ladislav et al. (2017) N-butyldeoxynojirimycin delays motor deficits, cerebellar microgliosis, and Purkinje cell loss in a mouse model of mucolipidosis type IV. Neurobiol Dis 105:257-270
Pera, Marta; Larrea, Delfina; Guardia-Laguarta, Cristina et al. (2017) Increased localization of APP-C99 in mitochondria-associated ER membranes causes mitochondrial dysfunction in Alzheimer disease. EMBO J 36:3356-3371
Melentijevic, Ilija; Toth, Marton L; Arnold, Meghan L et al. (2017) C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress. Nature 542:367-371
Kikusui, Takefumi; Hiroi, Noboru (2017) A Self-Generated Environmental Factor as a Potential Contributor to Atypical Early Social Communication in Autism. Neuropsychopharmacology 42:378
Saied-Santiago, Kristian; Townley, Robert A; Attonito, John D et al. (2017) Coordination of Heparan Sulfate Proteoglycans with Wnt Signaling To Control Cellular Migrations and Positioning in Caenorhabditis elegans. Genetics 206:1951-1967
Ray, Alex K; DuBois, Juwen C; Gruber, Ross C et al. (2017) Loss of Gas6 and Axl signaling results in extensive axonal damage, motor deficits, prolonged neuroinflammation, and less remyelination following cuprizone exposure. Glia 65:2051-2069
Zheng, Chaogu; Diaz-Cuadros, Margarete; Nguyen, Ken C Q et al. (2017) Distinct effects of tubulin isotype mutations on neurite growth in Caenorhabditis elegans. Mol Biol Cell 28:2786-2801
Wang, Ping; Mokhtari, Ryan; Pedrosa, Erika et al. (2017) CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells. Mol Autism 8:11
Thomsen, Anna M; Gulinello, Maria E; Wen, Jing et al. (2017) Liposomal Cytarabine Induces Less Neurocognitive Dysfunction Than Intrathecal Methotrexate in an Animal Model. J Pediatr Hematol Oncol :
Sikora, Jakub; Dworski, Shaalee; Jones, E Ellen et al. (2017) Acid Ceramidase Deficiency in Mice Results in a Broad Range of Central Nervous System Abnormalities. Am J Pathol 187:864-883

Showing the most recent 10 out of 119 publications