G1. OBJECTIVES The overarching mission of the Animal Behavior (AB) Core is to assist investigators seeking to discover behavioral, physiological and metabolic phenotypes in diverse rodent models of intellectual and developmental disabilities. To achieve this mission, the Core performs studies in mice and rats to identify the functional alterations resulting from genetic, developmental or environmental manipulations that may impair neural and behavioral development. These include changes in developmental milestones, sensorimotor function, cognitive function, affective and social behaviors, feeding and activity patterns, body composition and/or, energy expenditure. Through collaborative efforts with the Neurogenomics (NGEN), Cellular and Molecular Imaging (CMI), Tissue Engineering and Reprogramming(TECR), Human Clinical Phenotyping (HCP) and Translational Neuroimaging (TNI) Cores, the consequences of defined genetic or physiological alterations in mice and rats are thoroughly characterized to determine their impact in the context of the measures most relevant and translatable to the human disease phenotype. The role of candidate molecules in relevant tissues, such as neurons, glia and skeletal muscle can be elucidated by thorough and definitive experimentation and screening in mouse and rat models. To enhance research capabilities specific to IDD-related projects, the IDDRC leadership has leveraged the resources of two existing Einstein Shared Resources to form the AB Core. These are the Rodent Behavioral Evaluation Core established by the Department of Neuroscience and headed by Dr. Gulinello, and the Animal Physiology Core developed by the Diabetes Research and Training Center and headed by Dr. Schwartz. The AB Core is designed to satisfy the diverse needs of all IDDRC investigators using awake, unrestrained rodents in their studies by providing state-of-the-art assessments of developmental cognitive and sensorimotor function, of affective, social and motivated behavior, and of whole body and brain metabolism. The structure of the core reflects the fact that advances in understanding the neurobiology of IDD increasingly require not only classical measures of cognitive, motivated and sensorimotor functions, but must also include assessments of nutritional, metabolic and feeding-related behaviors, that together determine the functional profile of the subject and interact with the gentoype and pharmacological interventions. By combining existing Core capabilities and experienced faculty from the Departments of Neuroscience and Medicine, we have established an Animal Behavior Core uniquely suited to plan, perform and evaluate coordinated behavioral and metabolic assessments in developing and adult rodents.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Center Core Grants (P30)
Project #
5P30HD071593-04
Application #
8734926
Study Section
Special Emphasis Panel (ZHD1-DSR-Y)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
4
Fiscal Year
2014
Total Cost
$130,641
Indirect Cost
$52,413
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Boudewyn, Lauren C; Sikora, Jakub; Kuchar, Ladislav et al. (2017) N-butyldeoxynojirimycin delays motor deficits, cerebellar microgliosis, and Purkinje cell loss in a mouse model of mucolipidosis type IV. Neurobiol Dis 105:257-270
Pera, Marta; Larrea, Delfina; Guardia-Laguarta, Cristina et al. (2017) Increased localization of APP-C99 in mitochondria-associated ER membranes causes mitochondrial dysfunction in Alzheimer disease. EMBO J 36:3356-3371
Melentijevic, Ilija; Toth, Marton L; Arnold, Meghan L et al. (2017) C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress. Nature 542:367-371
Kikusui, Takefumi; Hiroi, Noboru (2017) A Self-Generated Environmental Factor as a Potential Contributor to Atypical Early Social Communication in Autism. Neuropsychopharmacology 42:378
Saied-Santiago, Kristian; Townley, Robert A; Attonito, John D et al. (2017) Coordination of Heparan Sulfate Proteoglycans with Wnt Signaling To Control Cellular Migrations and Positioning in Caenorhabditis elegans. Genetics 206:1951-1967
Ray, Alex K; DuBois, Juwen C; Gruber, Ross C et al. (2017) Loss of Gas6 and Axl signaling results in extensive axonal damage, motor deficits, prolonged neuroinflammation, and less remyelination following cuprizone exposure. Glia 65:2051-2069
Zheng, Chaogu; Diaz-Cuadros, Margarete; Nguyen, Ken C Q et al. (2017) Distinct effects of tubulin isotype mutations on neurite growth in Caenorhabditis elegans. Mol Biol Cell 28:2786-2801
Wang, Ping; Mokhtari, Ryan; Pedrosa, Erika et al. (2017) CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells. Mol Autism 8:11
Thomsen, Anna M; Gulinello, Maria E; Wen, Jing et al. (2017) Liposomal Cytarabine Induces Less Neurocognitive Dysfunction Than Intrathecal Methotrexate in an Animal Model. J Pediatr Hematol Oncol :
Sikora, Jakub; Dworski, Shaalee; Jones, E Ellen et al. (2017) Acid Ceramidase Deficiency in Mice Results in a Broad Range of Central Nervous System Abnormalities. Am J Pathol 187:864-883

Showing the most recent 10 out of 119 publications