This revised application seeks support to establish a Comprehensive NeuroAIDS Core Center (CNACC) at the Temple University School of Medicine in order to bring highly needed infrastructure for basic scientists and clinicians involved in HIV-1/AIDS research and neurological, neurodegenerative, and neurobehavioral disorders. The central theme of CNACC is structured based on our hypothesis that understanding the mechanisms of HIV-1/CNS interactions at the molecular, cellular, and experimental animal model levels and bidirectional communication of laboratory findings and clinical observations to validate basic science discoveries are prerequisites for the development of effective, safe, and reliable approaches for early diagnostics and therapeutics for AIDS-associated neurological dysfunctions. The CNACC will provide unprecedented infrastructure to a large group of neuroAIDS investigators who plan to pursue their objectives using multidisciplinary approaches in cell culture, small animal models, and in the clinical setting for assessing gene expression and biomarker identification at the cellular and molecular levels. Further, through the Developmental Core, the CNACC will provide a unique opportunity for training and mentoring of junior and clinical investigators and attract and develop physician scientists in the field of neuroAIDS. Through CNACC, we will provide start-up funds for new and innovative pilot projects of newly recruited, independent investigators and will support feasibility studies for more established neuroAIDS investigators. The funding through this center will create a unique infrastructure that will serve to enhance and extend the effectiveness of ongoing HIV-1 investigations and promote translational research in neuroAIDS at Temple and other medical institutions in the greater Philadelphia area that are involved in basic science and clinical AIDS research. With its comprehensive structural organization encompassing broadly based cores ranging from molecular biology to experimental animals to the clinical arena directed by skilled and highly competent investigators from various disciplines, CNACC will support research in a variety of areas such as virology, basic and behavioral neuroscience, and clinical science, all of which are aimed toward the discovery of better diagnostics and effective therapeutic agents toward AIDS/CNS disorders.

Public Health Relevance

Neurologic complications and mental disorders are among the most devastating clinical manifestations of HIV-1 infection in AIDS patients even after treatment with ART. The Comprehensive NeuroAIDS Core Center (CNACC) will bring an unprecedented infrastructure to a large group of AIDS/neuroscience investigators at Temple and area institutions in Philadelphia, and extend the effectiveness and public health impact of bench to clinic research related to neuroAIDS and mental health.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Center Core Grants (P30)
Project #
5P30MH092177-02
Application #
8312506
Study Section
Special Emphasis Panel (ZMH1-ERB-F (05))
Program Officer
Joseph, Jeymohan
Project Start
2011-08-05
Project End
2016-05-31
Budget Start
2012-06-01
Budget End
2013-05-31
Support Year
2
Fiscal Year
2012
Total Cost
$1,625,147
Indirect Cost
$664,846
Name
Temple University
Department
Neurosciences
Type
Schools of Medicine
DUNS #
057123192
City
Philadelphia
State
PA
Country
United States
Zip Code
19122
Wang, Jin Ying; Darbinyan, Armine; White, Martyn K et al. (2014) Involvement of IRS-1 interaction with ADAM10 in the regulation of neurite extension. J Cell Physiol 229:1039-46
Dahiya, Satinder; Liu, Yujie; Nonnemacher, Michael R et al. (2014) CCAAT enhancer binding protein and nuclear factor of activated T cells regulate HIV-1 LTR via a novel conserved downstream site in cells of the monocyte-macrophage lineage. PLoS One 9:e88116
Palma, Jonathan; Abood, Mary E; Barbe, Mary F et al. (2014) Functional interaction between HIV-gp120 and opioid system in the preoptic anterior hypothalamus. Drug Alcohol Depend 134:383-6
White, Martyn K; Kaminski, Rafal; Khalili, Kamel et al. (2014) Rad51 activates polyomavirus JC early transcription. PLoS One 9:e110122
Pozniak, Paul D; White, Martyn K; Khalili, Kamel (2014) TNF-*/NF-*B signaling in the CNS: possible connection to EPHB2. J Neuroimmune Pharmacol 9:133-41
Gill, Alexander J; Kovacsics, Colleen E; Cross, Stephanie A et al. (2014) Heme oxygenase-1 deficiency accompanies neuropathogenesis of HIV-associated neurocognitive disorders. J Clin Invest 124:4459-72
Strazza, Marianne; Banerjee, Anupam; Alexaki, Aikaterini et al. (2014) Effect of ?-opioid agonist DAMGO on surface CXCR4 and HIV-1 replication in TF-1 human bone marrow progenitor cells. BMC Res Notes 7:752
Fischer, Tracy; Wyatt, Christina M; D'Agati, Vivette D et al. (2014) Mononuclear phagocyte accumulation in visceral tissue in HIV encephalitis: evidence for increased monocyte/macrophage trafficking and altered differentiation. Curr HIV Res 12:201-12
Aiamkitsumrit, Benjamas; Dampier, Will; Martin-Garcia, Julio et al. (2014) Defining differential genetic signatures in CXCR4- and the CCR5-utilizing HIV-1 co-linear sequences. PLoS One 9:e107389
Hu, Wenhui; Kaminski, Rafal; Yang, Fan et al. (2014) RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci U S A 111:11461-6

Showing the most recent 10 out of 17 publications