BASIC SCIENCE I CORE: CELL CULTURE/NEUROTROPIC VIRUS, NEUROSCIENCE, AND PROTEOMICS The overall objective of the Basic Science Core I (BSCI) is to provide in vitro shared resources and training to basic and clinical researchers to study neurological disorders at the molecular level, related to Human Immunodeficiency Virus (HIV) infection. During HIV central nervous system (CNS) disease, disparities between virus-associated insults and host-mediated attempts at rescue and repair are responsible for cognitive deficits. To protect cells of the CNS, and to promote beneficial responses, key elements in the signaling crosstalk between cells of the CNS and virus must be understood. Information regarding cell-virus biochemical signaling interactions must be addressed, in large part, by in vitro studies. The BSCI will provide investigators with reliable access to high quality CNS cell cultures, virus and viral products, and other factors that contribute to HIV CNS disease which are critical to delineate signaling pathways important in disease progression. BSCI will also provide assistance and expertise in classical neuroscience techniques and tools to support investigation of cellular/molecular interactions between cells of the CNS and HIV that underlie neurocognitive dysfunction. The BSCI will also provide state-of-the-art services for discovering the molecular mechanisms involved in the development of AIDS-associated CNS dysfunction through proteomics and data analysis. Novel methods for discovering of biomarkers, innovative differential expression profiling and bioinformatics along with interactomics and phosphoproteomics are among the services that will be reliably and efficiently offered to the investigators. Our core will work closely with the other cores to promote a comprehensive multidisciplinary collaborative center program. This synergistic approach will ensure the success of both recipients of CNACC developmental awards and other members of the Center in conducting productive high impact research into HIV associated neurological disorders.

Public Health Relevance

This core will provide cell culture and virology services to investigators performing biomedical research on AIDS and the nervous system. Moreover, in the context of this core facility, neuroAIDS researchers will be able to analyze clinical samples, cell culture, or animal models for biomarkers of disease and to uncover mechansims involved in the development and progression of CNS disorders associated with HIV-1 infection.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZMH1-ERB-F)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Temple University
United States
Zip Code
Dampier, Will; Antell, Gregory C; Aiamkitsumrit, Benjamas et al. (2016) Specific amino acids in HIV-1 Vpr are significantly associated with differences in patient neurocognitive status. J Neurovirol :
Datta, Prasun K; Kaminski, Rafal; Hu, Wenhui et al. (2016) HIV-1 Latency and Eradication: Past, Present and Future. Curr HIV Res 14:431-441
Sariyer, Rahsan; De-Simone, Francesca Isabella; Gordon, Jennifer et al. (2016) Immune suppression of JC virus gene expression is mediated by SRSF1. J Neurovirol :
Kaminski, Rafal; Chen, Yilan; Fischer, Tracy et al. (2016) Elimination of HIV-1 Genomes from Human T-lymphoid Cells by CRISPR/Cas9 Gene Editing. Sci Rep 6:22555
Regan, Patrick M; Sariyer, Ilker K; Langford, T Dianne et al. (2016) Morphine-induced MOR-1X and ASF/SF2 Expressions Are Independent of Transcriptional Regulation: Implications for MOR-1X Signaling. J Cell Physiol 231:1542-53
Zhong, Lin; Li, Hao; Li, Zhiqiang et al. (2016) C7 genotype of the donor may predict early bacterial infection after liver transplantation. Sci Rep 6:24121
Strazza, Marianne; Pirrone, Vanessa; Wigdahl, Brian et al. (2016) Prolonged Morphine Exposure Induces Increased Firm Adhesion in an in Vitro Model of the Blood-Brain Barrier. Int J Mol Sci 17:
Kaminski, R; Bella, R; Yin, C et al. (2016) Excision of HIV-1 DNA by gene editing: a proof-of-concept in vivo study. Gene Ther 23:690-5
Wollebo, Hassen S; Bellizzi, Anna; Cossari, Dominique H et al. (2016) The Brd4 acetyllysine-binding protein is involved in activation of polyomavirus JC. J Neurovirol 22:615-625
Feng, Dechun; Dai, Shen; Liu, Fengming et al. (2016) Cre-inducible human CD59 mediates rapid cell ablation after intermedilysin administration. J Clin Invest 126:2321-33

Showing the most recent 10 out of 86 publications