According to the recent Institute of Medicine (IOM) report on Relieving Pain in America (2011), chronic pain is a public health epidemic affecting more than 116 million Americans and costing more than $600 billion per year in healthcare expenses and lost work productivity. More Americans suffer from pain than those afflicted with heart disease, diabetes and cancer combined. Despite recent advances in treatment, most patients do not obtain adequate pain relief. The purpose of this Center in the Genomics of Pain is to promote pain research that incorporates rigorous phenotyping of pain and comorbid conditions with cutting edge genomics to more fully understand how individual differences can reduce or amplify pain. The Genomics Core (GC) is a critical component of the Center for the Genomics of Pain because it provides services and support for basic science and clinical investigators to combine and integrate phenotype and genotype/genomics analyses. To achieve the Center goals and those of the individual pilot studies, the GC will provide services in genomics assays (microarray, sequencing, genotyping), bioinformatics analysis and visualization of molecular genetics, genomics, genetic epidemiology, and clinical and translational genomics research data. For the first time on the UMB campus, these resources will be centralized and coordinated specifically for pain research. The GC will operate with the following four aims:
Aim 1. Molecular Genomics. The Core will provide DNA sequence analysis;mutation detection;low, medium, and high throughput single nucleotide polymorphism (SNP) genotyping;gene expression profiling via microarray;real time RT-PCR;RNA, DNA and exome sequencing;and other general molecular biology and genetics methods, such as DNA/RNA extraction with qualitative and quantitative analysis.
Aim 2. Data Management and Processing. The Core will provide efficient data management including edit checking of data to maintain data quality, facilitation of data transfer from one project to another, short and long-term storage and maintenance of data security. In addition, the Core will help to maintain and manage a Center database of genomic and phenotype data available for Center members to mine;these data will reside on the Center mainframe computer.
Aim 3. Genetic/Genomic Data Analysis and Bioinformatics. The Core will provide the expertise in genetic/genomic data analysis and bioinformatics tools for genomic discovery and gene expression studies. In addition, this Core will provide statistical tools to integrate phenotype and genomics data so that models of pain susceptibility can be developed and tested. The core will apply and develop various statistical, computational, bioinformatics and data visualization tools to meet the needs of each project for genomic analysis. Exploratory Aim/Future Direction?Clinical/Translational Genomics. The Core will facilitate clinical and translational research, including studies based on genotype-driven recruitment and other genomic-based approaches to understand functional consequences and underlying mechanisms of genetic variation and to develop novel clinical applications. For example, if Center investigators identify a SNP associated with pain susceptibility, we will work to integrate the "clinically actionable" SNP into the electronic health record.

National Institute of Health (NIH)
National Institute of Nursing Research (NINR)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZNR1-REV-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Maryland Baltimore
United States
Zip Code
Dorsey, Susan G; Schiffman, Rachel; Redeker, Nancy S et al. (2014) National Institute of Nursing Research Centers of Excellence: a logic model for sustainability, leveraging resources, and collaboration to accelerate cross-disciplinary science. Nurs Outlook 62:384-93
Yerges-Armstrong, Laura M; Yau, Michelle S; Liu, Youfang et al. (2014) Association Analysis of BMD-associated SNPs with Knee Osteoarthritis. J Bone Miner Res 29:1373-9