According to the recent Institute of Medicine (IOM) report on Relieving Pain in America (2011), chronic pain is a public health epidemic affecting more than 116 million Americans and costing more than $600 billion per year in healthcare expenses and lost work productivity. More Americans suffer from pain than those afflicted with heart disease, diabetes and cancer combined. Despite recent advances in treatment, most patients do not obtain adequate pain relief. Because we do not fully understand the mechanisms underlying chronic pain development and persistence, new approaches that take into account comorbid pain conditions and genomics are needed. The primary mission of our Center is to significantly advance the science underlying the genomic mechanisms of pain so that new drug targets can be elucidated and novel therapeutic interventions can be tested to eradicate pain. The conceptual basis for this core acknowledges that nociception (neural processing of noxious stimulation) and pain (unpleasant emotional experience) are multifactorial and that co-morbidities, for example depression, anxiety, stress, and fear, significantly influence these processes (Figure 1 (Maixner et al., 2011). This stance is further supported in a recent review in which Mogil (2009) argues that rodent models of pain should be tested not just for nocifensive behaviors, but also for pain-affected phenomena such as cognition, depression, fear and anxiety. The same argument holds true when examining clinical chronic pain phenotypes (Diatchenko et al., 2006). The overarching mission of the Translational Phenotyping Core (TPC) is to provide services and support for rodent or clinical behavioral phenotyping and sample collection and processing. To achieve this mission, we propose the following aims:
Aim 1. Support the collection, analysis, interpretation and dissemination of behavioral data for the four pilot studies included in the Center proposal as well as new studies as they arise. The core service capacity includes rodent and clinical testing equipment that will provide a wide range of phenotyping assays, including pain/nocifensive testing and assessment of depression, anxiety, fear and other comorbid pain conditions. In addition, although not proposed for the current pilot studies, equipment and resources are available for new pilot studies that will require assessment of plasticity in the spinal cord dorsal horn via electrophysiological recording and evaluation of gait disturbances.
Aim 2. Promote interdisciplinary collaborations between basic, translational and clinical scientists involved in pain research through increased access to comprehensive services. Initially, this Core will primarily serve the Center pilot PIs. We envision that as we publish and market our core phenotyping services, utilization by interdisciplinary colleagues will increase and new collaborations will be formed to further accelerate pain research on campus.
Aim 3. Acquire, maintain, and upgrade equipment and resources that can be used to support existing and future studies of pain. With expanded use, particularly by colleagues from various disciplines, we anticipate that user requests will necessitate the purchase of new equipment that can be used to supply additional assays that more completely address the pain phenotype. The core directors will survey the campus community and core users annually to determine user needs and obtain needed equipment. In addition, the core directors will keep detailed logs of service and maintenance contracts on each piece of equipment and calibrate instruments as needed.

National Institute of Health (NIH)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZNR1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Maryland Baltimore
United States
Zip Code
Dorsey, Susan G; Schiffman, Rachel; Redeker, Nancy S et al. (2014) National Institute of Nursing Research Centers of Excellence: a logic model for sustainability, leveraging resources, and collaboration to accelerate cross-disciplinary science. Nurs Outlook 62:384-93
Yerges-Armstrong, Laura M; Yau, Michelle S; Liu, Youfang et al. (2014) Association Analysis of BMD-associated SNPs with Knee Osteoarthritis. J Bone Miner Res 29:1373-9