The Ohio State University (OSU) Neuroscience Center provides support for studies aimed at analysis and treatment of neurological disorders with an emphasis on animal models. The Center is a collaborative effort of 43 neuroscientists (25 NINDS funded) from OSU and Nationwide Children's Hospital. The majority of these PIs work on aspects of nervous system disorders with four major focus areas being motoneuron disease, neuromuscular disease, CNS and PNS injury, and brain tumors. These PIs span numerous departments, centers, and institutes at OSU that support basic and translational neuroscience research making the Center a nucleus of neuroscience activity on campus. Center priorities align with and can leverage the Neuroscience Signature Program at OSU, a multi-million dollar effort supporting Neuroscience as one of five growth areas on campus. In addition, the Center aligns with the newly granted Clinical and Translational Science Award to the OSU Medical Center. To support the development, characterization and analysis of nervous system disease models, this proposal supports 5 research Cores. Core A (Administrative) will oversee the OSU Neuroscience Center. Core B (Genetics) will support the development of transgenic/knockout mice and the use of zebrafish with an emphasis on traditional and novel genetic approaches. In addition this Core will support a Genome Manipulation Facility focusing on zinc-finger nuclease and BAC recombineering techniques for the generation of new animal models. Core C (CNS/PNS Injury and Rodent Behavior) will provide the equipment and technical expertise to generate injury models and to analyze behavioral deficits associated with these models. Core D (Physiology) will provide equipment and technical assistance for both electrophysiology and muscle physiology to analyze these models. Core E (Imaging) will support both Confocal and MRI imaging with reduced costs and technical assistance. Core F (Xenograft) will provide equipment and technical assistance to generate mouse models of brain tumors. These unique Cores will provide PIs with access to centralized equipment and technical expertise unavailable in any single lab, thus substantially enhancing neuroscience research on the OSU campus.

Public Health Relevance

This award will fund Cores that support the development, characterization, and analysis of animal models of neurological diseases and injury. As such the goals of the Center are directly in line with the NINDS mission.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Center Core Grants (P30)
Project #
Application #
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Program Officer
Talley, Edmund M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Ohio State University
Schools of Medicine
United States
Zip Code
Banasavadi-Siddegowda, Y K; Russell, L; Frair, E et al. (2017) PRMT5-PTEN molecular pathway regulates senescence and self-renewal of primary glioblastoma neurosphere cells. Oncogene 36:263-274
Goldstein, Evan Z; Church, Jamie S; Pukos, Nicole et al. (2017) Intraspinal TLR4 activation promotes iron storage but does not protect neurons or oligodendrocytes from progressive iron-mediated damage. Exp Neurol 298:42-56
Church, Jamie S; Milich, Lindsay M; Lerch, Jessica K et al. (2017) E6020, a synthetic TLR4 agonist, accelerates myelin debris clearance, Schwann cell infiltration, and remyelination in the rat spinal cord. Glia 65:883-899
Pan, Christopher C; Shah, Nirav; Kumar, Sanjay et al. (2017) Angiostatic actions of capsicodendrin through selective inhibition of VEGFR2-mediated AKT signaling and disregulated autophagy. Oncotarget 8:12675-12685
Duy, Phan Q; Berberoglu, Michael A; Beattie, Christine E et al. (2017) Cellular responses to recurrent pentylenetetrazole-induced seizures in the adult zebrafish brain. Neuroscience 349:118-127
Siu, J J; Queen, N J; Huang, W et al. (2017) Improved gene delivery to adult mouse spinal cord through the use of engineered hybrid adeno-associated viral serotypes. Gene Ther 24:361-369
Weil, Zachary M; Karelina, Kate (2017) Traumatic Brain Injuries during Development: Implications for Alcohol Abuse. Front Behav Neurosci 11:135
Saad, Nancy S; Repas, Steven J; Floyd, Kyle et al. (2017) Recovery following Thyroxine Treatment Withdrawal, but Not Propylthiouracil, Averts In Vivo and Ex Vivo Thyroxine-Provoked Cardiac Complications in Adult FVB/N Mice. Biomed Res Int 2017:6071031
Welker, Alessandra M; Jaros, Brian D; An, Min et al. (2017) Changes in tumor cell heterogeneity after chemotherapy treatment in a xenograft model of glioblastoma. Neuroscience 356:35-43
Chang, Yi Seok; Jalgaonkar, Swati P; Middleton, Justin D et al. (2017) Stress-inducible gene Atf3 in the noncancer host cells contributes to chemotherapy-exacerbated breast cancer metastasis. Proc Natl Acad Sci U S A 114:E7159-E7168

Showing the most recent 10 out of 235 publications