The ability to test hypotheses in a variety of neuroscience fields has exploded due to the new ability to monitor and manipulate key cellular events in living animals and other models of disease and neuronal function in a high throughput fashion using modern cell biological approaches. Our previous award provided the foundation for a world-class Neuroscience Core, in support of NINDS-funded aims of UCSD Neuroscientists. With this application, we seek to incorporate high-throughput and high-sensitivity approaches in our established Neuroscience Imaging Core through purchase and active management of new equipment for our Major Users. Furthermore, we aim to increase the number NINDS-funded investigators participating in this initiative from 8 to 28 labs, to reflect ou outstanding cellular neuroscience community and number of qualifying projects. The University of California, San Diego Neurosciences Core has grown to be a centerpiece for research within the neuroscience community. Its existence has resulted in remarkable yields in productivity, expanded scientific scope and ability to test hypotheses using cutting edge technology and in vivo approaches. In this application, we propose move into exciting new areas through: 1. In vivo brain imaging of live neural tissue with high-sensitivity multiphoton microscopy. 2. High throughput electron microscopic ultrastructural imaging taking advantage of the latest breakthroughs in serial block face scanning electron microscopy (SBFSEM) and emergent probe technologies developed at UCSD. 3. More than tripling the number of Major User NINDS-funded investigators at UCSD. The research that this equipment will support involves neuronal stem cell differentiation, migration, axonal guidance, activity-dependent plasticity, connectivity, injury repair, degenerative disease and developmental biology. The requested systems were chosen because of their high data quality, unsurpassed abilities to document events in the nervous system not previously possible, and their ease of use, which is critical for a multi-user Core. The Neuroscience Core offers on-hand technicians to provide training for each of the services provided. The Core leverages the expertise of the other UCSD efforts including the National Center for Microscopy and Imaging Research (NCMIR), which will provide expertise and staff to meet the proposed goals to support training and research. The flexibility, dynamic range, sensitivity, and processing capabilities that will be provided by these tools is essential fr the next phase of the NINDS-funded work that has important implications for multiple nervous system diseases.

Public Health Relevance

Modern research requires access to newly emerging equipment, too expensive for any given lab. Further, training future neuroscientists requires multidisciplinary active exposure across multiple technologies. New developments in engineering have allowed for: 1] Microscopic maps deep within living brain. 2] Large 3D maps at electron microscopic resolution correlated with specific protein probes. We propose to acquire new instruments to provide this technology in our highly successful NINDS-funded Neuroscience Core, and triple the number of Major User labs.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZNS1-SRB-B (38))
Program Officer
Talley, Edmund M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
Schools of Medicine
La Jolla
United States
Zip Code
Han, Joo Seok; Vitre, Benjamin; Fachinetti, Daniele et al. (2014) Bimodal activation of BubR1 by Bub3 sustains mitotic checkpoint signaling. Proc Natl Acad Sci U S A 111:E4185-93
Bertin, Samuel; Aoki-Nonaka, Yukari; de Jong, Petrus Rudolf et al. (2014) The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4? T cells. Nat Immunol 15:1055-63
Teodorof, C; Divakar, S; Soontornniyomkij, B et al. (2014) Intracellular mannose binding lectin mediates subcellular trafficking of HIV-1 gp120 in neurons. Neurobiol Dis 69:54-64
Schutt, Carolyn E; Ibsen, Stuart D; Benchimol, Michael J et al. (2014) Manipulating nanoscale features on the surface of dye-loaded microbubbles to increase their ultrasound-modulated fluorescence output. Small 10:3316-24
Dolezalova, Dasa; Hruska-Plochan, Marian; Bjarkam, Carsten R et al. (2014) Pig models of neurodegenerative disorders: Utilization in cell replacement-based preclinical safety and efficacy studies. J Comp Neurol 522:2784-801
Moore-Morris, Thomas; GuimarĂ£es-Camboa, Nuno; Banerjee, Indroneal et al. (2014) Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis. J Clin Invest 124:2921-34
de Jong, Petrus R; Takahashi, Naoki; Harris, Alexandra R et al. (2014) Ion channel TRPV1-dependent activation of PTP1B suppresses EGFR-associated intestinal tumorigenesis. J Clin Invest 124:3793-806
Delavar, Hamid; Nogueira, Leonardo; Wagner, Peter D et al. (2014) Skeletal myofiber VEGF is essential for the exercise training response in adult mice. Am J Physiol Regul Integr Comp Physiol 306:R586-95
Fu, Xuemei; Rong, Zhili; Zhu, Shengyun et al. (2014) Genetic approach to track neural cell fate decisions using human embryonic stem cells. Protein Cell 5:69-79
Blum, Angela P; Kammeyer, Jacquelin K; Yin, Jian et al. (2014) Peptides displayed as high density brush polymers resist proteolysis and retain bioactivity. J Am Chem Soc 136:15422-37

Showing the most recent 10 out of 140 publications