Zebrafish Core C3.1 Rationale. Core C maintains wild type, transgenic and mutant zebrafish strains for RMNDC investigators. The unique developmental and optical imaging properties of the zebrafish embryo makes it an ideal model to address questions at the heart of the research programs RMNDC investigators. UCD NINDS researchers are internationally recognized and expert in the fields of neurophysiology, neurodevelopment and optical imaging. During the previous award period. Core C removed technical barriers for RMNDC investigators who were interested in using the model system (e.g., Betz, Caldwell, Clouthier, Niswander, Restrepo, Taylor, Williams) but did not have experience or means for maintaining lines. We propose three Specific Aims for Core C that will allow RMNDC members to take advantage of the zebrafish system for neurodevelopmental and behavioral studies. In addition to the 13 current Core C users, the facility will allow access to the zebrafish model to investigators who have not considered its use because of the pragmatic limitations associated with maintaining and breeding zebrafish. In particular, there has been growing interest in complementing rodent studies (e.g.. Core B) with ones done in zebrafish (e.g., Appel, Artinger, Barlow, Clouthier, Macklin, Niswander, Restrepo, Williams), and vice versa. The core will also be a resource for the larger scientific community because transgenic lines will be described on the RMNDC website and made available to the Zebrafish International Resource Center (ZIRC) by the time of the first publication.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Center Core Grants (P30)
Project #
Application #
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Colorado Denver
United States
Zip Code
Lupo, J Eric; Koka, Kanthaiah; Jenkins, Herman A et al. (2014) Vibromechanical assessment of active middle ear implant stimulation in simulated middle ear effusion: a temporal bone study. Otol Neurotol 35:470-5
Kulbe, Jacqueline R; Mulcahy Levy, Jean M; Coultrap, Steven J et al. (2014) Excitotoxic glutamate insults block autophagic flux in hippocampal neurons. Brain Res 1542:12-9
Barcomb, Kelsey; Buard, Isabelle; Coultrap, Steven J et al. (2014) Autonomous CaMKII requires further stimulation by Ca2+/calmodulin for enhancing synaptic strength. FASEB J 28:3810-9
Chen, Jian-Fu; Zhang, Ying; Wilde, Jonathan et al. (2014) Microcephaly disease gene Wdr62 regulates mitotic progression of embryonic neural stem cells and brain size. Nat Commun 5:3885
Nguyen, Linda M; Pozzoli, Marina; Hraha, Thomas H et al. (2014) Decreasing cx36 gap junction coupling compensates for overactive KATP channels to restore insulin secretion and prevent hyperglycemia in a mouse model of neonatal diabetes. Diabetes 63:1685-97
Hoffman, P L; Saba, L M; Flink, S et al. (2014) Genetics of gene expression characterizes response to selective breeding for alcohol preference. Genes Brain Behav 13:743-57
Moreno, Rosa L; Ribera, Angeles B (2014) Spinal neurons require Islet1 for subtype-specific differentiation of electrical excitability. Neural Dev 9:19
Carlisle, Tara C; Ribera, Angeles B (2014) Connexin 35b expression in the spinal cord of Danio rerio embryos and larvae. J Comp Neurol 522:861-75
Wang, Yuying; Pan, Luyuan; Moens, Cecilia B et al. (2014) Notch3 establishes brain vascular integrity by regulating pericyte number. Development 141:307-17
Pearson, Jennifer N; Schulz, Kalynn M; Patel, Manisha (2014) Specific alterations in the performance of learning and memory tasks in models of chemoconvulsant-induced status epilepticus. Epilepsy Res 108:1032-40

Showing the most recent 10 out of 49 publications