In this competitive renewal of our Institutional Center Core Grant to support neuroscience research, we propose to maintain and expand the operation of three existing Core facilities at the Johns Hopkins University School of Medicine (JHU SOM) that were established during the previous funding period of this Center Grant: a Multiphoton Imaging Core, a Monoclonal Antibody Core, and an Embryonic Stem Cell Engineering Core. These facilities currently provide necessary resources and perform required services that impractical for individual laboratories to provide on their own. Use of these Core facilities will continue to greatly benefit NINDS-funded research programs of the eleven Primary Center Investigators, and also other NINDS-funded investigators at JHU SOM, by providing access to unique equipment, training in new methodologies, and development of new reagents. The experimental opportunities and technical services offered by these three Cores complement, but do not duplicate, other Core facilities available to NINDSfunded investigators at JHU SOM. Seven of the eleven Primary Center Investigators are members of the Department of Neuroscience, four are members of the Department of Neurology,a nd one is in the Department of Pathology. The research programs of the Primary Center Investigators address unresolved issues in the areas of neural and glial development, synaptic structure and function, sensory transduction, and activity-dependent regulation of gene expression.
The Specific Aims of Primary Center Investigators'NINDS-funded research programs address critical clinical issues, including the developmental origins of neurological disorders, the promotion of neuronal regeneration following injury or degeneration, the underlying basis of neuropathic pain, and the origin of neurodegenerative disorders (Alzheimer's Dementia and Amyotrophic Lateral Sclerosis). The Primary Center Investigators constitute a highly interactive group with a history of seamless collaborative research efforts. The goal of this Center is to augment existing research programs by providing these investigators, and other NINDS-funded investigators at JHU SOM, with Core facilities that are not available elsewhere at this institution.

Public Health Relevance

of this application to support the operations of JHU SOM P30 NINDS Center Cores lies in the ability of these Cores to grealty facilitate progress of NINDS-funded JHU SOM projects, providing experimental support beyond what is possible in invidivudal laboratories. These projects address clinically relevant issues related to neurological and psychiatric disorders, and neuronal de- and regeneration.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Center Core Grants (P30)
Project #
5P30NS050274-08
Application #
8441556
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
8
Fiscal Year
2013
Total Cost
$143,118
Indirect Cost
$55,851
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Song, Woo-Jin; Mondal, Prosenjit; Wolfe, Andrew et al. (2014) Glucagon regulates hepatic kisspeptin to impair insulin secretion. Cell Metab 19:667-81
Paukert, Martin; Agarwal, Amit; Cha, Jaepyeong et al. (2014) Norepinephrine controls astroglial responsiveness to local circuit activity. Neuron 82:1263-70
Davis, Chung-ha O; Kim, Keun-Young; Bushong, Eric A et al. (2014) Transcellular degradation of axonal mitochondria. Proc Natl Acad Sci U S A 111:9633-8
Baxi, Emily G; Schott, Jason T; Fairchild, Amanda N et al. (2014) A selective thyroid hormone ? receptor agonist enhances human and rodent oligodendrocyte differentiation. Glia 62:1513-29
Issa, John B; Haeffele, Benjamin D; Agarwal, Amit et al. (2014) Multiscale optical Ca2+ imaging of tonal organization in mouse auditory cortex. Neuron 83:944-59
Pak, Thomas; Yoo, Sooyeon; Miranda-Angulo, Ana L et al. (2014) Rax-CreERT2 knock-in mice: a tool for selective and conditional gene deletion in progenitor cells and radial glia of the retina and hypothalamus. PLoS One 9:e90381
Kim, Eun Chul; Meng, Huan; Jun, Albert S (2014) N-Acetylcysteine increases corneal endothelial cell survival in a mouse model of Fuchs endothelial corneal dystrophy. Exp Eye Res 127:20-5
Park, Joo Min; Hu, Jia-Hua; Milshteyn, Aleksandr et al. (2013) A prolyl-isomerase mediates dopamine-dependent plasticity and cocaine motor sensitization. Cell 154:637-50
De Biase, Lindsay M; Kang, Shin H; Baxi, Emily G et al. (2011) NMDA receptor signaling in oligodendrocyte progenitors is not required for oligodendrogenesis and myelination. J Neurosci 31:12650-62
Tritsch, Nicolas X; Bergles, Dwight E (2010) Developmental regulation of spontaneous activity in the Mammalian cochlea. J Neurosci 30:1539-50

Showing the most recent 10 out of 13 publications