This application is in response to the NINDS Program Announcement requesting institutional center core grants to support neuroscience research. Accordingly, the current application seeks to create the UK Spinal Cord &Brain Injury Research Center (SCoBIRC) Core Grant to accelerate the research projects of 10 NINDS-funded investigators who are currently Pis on 12 NINDS R01s, and to enhance . The application asks for support for five core facilities: an Administrative and Bioinformatics Core, an Animal Surgery & TBI/SCI Model Core, a Behavioral Testing Core, a Microscopy, Image Analysis &Stereology Core and a Pharmacokinetics and Biomarker Core. Although some of the proposed technologies are currently in place in the laboratories of individual investigators, none of the cores currently exists. The proposal is for these resources to be centralized, in some cases upgraded and added to with additional equipment. Dedicated technical support is requested for each of the cores to insure that they will be run efficiently with minimal downtime and equipment failure, and serve to enhance the productivity of SCoBIRC and other NINDSsupported investigators. It is also expected that these cores will promote communication of data and foster overall collaboration. All of the participating investigators have documented needs for the use of most of the core facilities: 6 of 10 will use all 5 cores, 3 will use 4 of the cores and only 1 will use 3 of them. Use of the cores will be shared with other non-qualifying neurological investigators. The PI has had considerable administrative experience, and each of the Core Directors is fully qualified to direct the use of the proposed technologies. They will be backed up in 4 of the 5 cases with equally experienced Assistant Directors and dedicated technical staff who will perform pilot studies, train new investigators, handle scheduling, maintain supplies and equipment maintenance. The performance of the cores will be reviewed quarterly by a Steering Committee consisting of all of the qualifying investigators. It is anticipated that the existence of these cores will greatly enhance the accomplishment of the SCoBIRC mission which is directed at the discovery and clinical translation of therapeutic approaches for spinal cord and brain injury. In addition, these facilities will make available centralized technologies which will benefit UK neurological research in general, and improve the ability of both experienced and young investigators to compete for extramural funding.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Center Core Grants (P30)
Project #
5P30NS051220-07
Application #
8213433
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Program Officer
Talley, Edmund M
Project Start
2005-05-01
Project End
2015-11-30
Budget Start
2011-12-01
Budget End
2012-11-30
Support Year
7
Fiscal Year
2012
Total Cost
$687,354
Indirect Cost
$194,435
Name
University of Kentucky
Department
Neurology
Type
Schools of Medicine
DUNS #
939017877
City
Lexington
State
KY
Country
United States
Zip Code
40506
Yonutas, Heather M; Pandya, Jignesh D; Sullivan, Patrick G (2015) Changes in mitochondrial bioenergetics in the brain versus spinal cord become more apparent with age. J Bioenerg Biomembr 47:149-54
Carlson, Shaun W; Madathil, Sindhu K; Sama, Diana M et al. (2014) Conditional overexpression of insulin-like growth factor-1 enhances hippocampal neurogenesis and restores immature neuron dendritic processes after traumatic brain injury. J Neuropathol Exp Neurol 73:734-46
Bolton, Amanda N; Saatman, Kathryn E (2014) Regional neurodegeneration and gliosis are amplified by mild traumatic brain injury repeated at 24-hour intervals. J Neuropathol Exp Neurol 73:933-47
Pandya, Jignesh D; Readnower, Ryan D; Patel, Samir P et al. (2014) N-acetylcysteine amide confers neuroprotection, improves bioenergetics and behavioral outcome following TBI. Exp Neurol 257:106-13
Miller, Darren M; Wang, Juan A; Buchanan, Ashley K et al. (2014) Temporal and spatial dynamics of nrf2-antioxidant response elements mediated gene targets in cortex and hippocampus after controlled cortical impact traumatic brain injury in mice. J Neurotrauma 31:1194-201
Srodulski, Sarah; Sharma, Savita; Bachstetter, Adam B et al. (2014) Neuroinflammation and neurologic deficits in diabetes linked to brain accumulation of amylin. Mol Neurodegener 9:30
Singh, Ranjana; Brewer, M Kathryn; Mashburn, Charles B et al. (2014) Calpain 5 is highly expressed in the central nervous system (CNS), carries dual nuclear localization signals, and is associated with nuclear promyelocytic leukemia protein bodies. J Biol Chem 289:19383-94
Yu, C G; Singh, R; Crowdus, C et al. (2014) Fenbendazole improves pathological and functional recovery following traumatic spinal cord injury. Neuroscience 256:163-9
Patel, Samir P; Sullivan, Patrick G; Pandya, Jignesh D et al. (2014) N-acetylcysteine amide preserves mitochondrial bioenergetics and improves functional recovery following spinal trauma. Exp Neurol 257:95-105
Miller, Darren M; Singh, Indrapal N; Wang, Juan A et al. (2013) Administration of the Nrf2-ARE activators sulforaphane and carnosic acid attenuates 4-hydroxy-2-nonenal-induced mitochondrial dysfunction ex vivo. Free Radic Biol Med 57:1-9

Showing the most recent 10 out of 51 publications