Drosophila is an important model for the study of genetics, development, gene regulation, systems biology and neurobiology. Genetically, it is the most fully characterized metazoan. Because of evolutionary conservation, Drosophila has turned out to be an important model for fundamental studies of medical, agricultural, and environmental interest. For medicine it is important not only that the use of Drosophila permits rigorous, high resolution study of highly conserved processes but that >75% of human disease genes have Drosophila homologs and that Drosophila models of important diseases can be studied. More recently it has become apparent that knowledge of the systems biology of Drosophila will be central to the use of genomics to study the environmental impact (e.g. on other arthropods) and public health consequences of environmental toxicants. The increasing application of high-throughput genomics techniques by fly workers is paving the way for a comprehensive functional genomics of Drosophila. To reach this goal, the community has required - and continues to require ~ ready, economical access to the genomics materials produced by these efforts. The Drosophila Genomics Resource Center (DGRC) provides the research community with access to these resources and facilitates their effective use. Specifically, the DGRC: 1. Provides broad access to genomics resources by acquiring, archiving, curating, and distributing resources including, clones, vectors, and cell lines. 2. Facilitates effective use of genomics resources by providing web based documentation, protocols, and guidelines;email and telephone help;outreach at conferences;and workshops. 3. Through its efforts on Emerging Technologies ~ soliciting new resources and developing new protocols ~ it opens new opportunities for the use of these genomics resources. The DGRC is important to the Drosophila research community. The DGRC has 7500 users (cumulative over 8 years) in 3400 laboratories, adds 600 users per year, and makes >2000 shipments of materials per year. User surveys document the importance of these efforts to Drosophila researchers.

Public Health Relevance

Drosophila has been historically one of the best organisms in which to study fundamental genetics - including genetic processes important in humans;it remains so today. More recently it has become clear that Drosophila is an excellent organism in which to study some human infectious diseases, numerous neurodegenerative diseases, and cancer, and in which to do drug discovery.

National Institute of Health (NIH)
Office of The Director, National Institutes of Health (OD)
Animal (Mammalian and Nonmammalian) Model, and Animal and Biological Material Resource Grants (P40)
Project #
Application #
Study Section
Special Emphasis Panel ()
Program Officer
O'Neill, Raymond R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Indiana University Bloomington
Schools of Arts and Sciences
United States
Zip Code
Neuman, Sarah D; Bashirullah, Arash (2018) Hobbit regulates intracellular trafficking to drive insulin-dependent growth during Drosophila development. Development 145:
Brown, Haley E; Reichert, Marie C; Evans, Timothy A (2018) In Vivo Functional Analysis of Drosophila Robo1 Fibronectin Type-III Repeats. G3 (Bethesda) 8:621-630
Spinner, Michael A; Walla, David A; Herman, Tory G (2018) Drosophila Syd-1 Has RhoGAP Activity That Is Required for Presynaptic Clustering of Bruchpilot/ELKS but Not Neurexin-1. Genetics 208:705-716
Martin, Judy Lisette; Sanders, Erin Nicole; Moreno-Roman, Paola et al. (2018) Long-term live imaging of the Drosophila adult midgut reveals real-time dynamics of division, differentiation and loss. Elife 7:
Okamoto, Naoki; Viswanatha, Raghuvir; Bittar, Riyan et al. (2018) A Membrane Transporter Is Required for Steroid Hormone Uptake in Drosophila. Dev Cell 47:294-305.e7
Li, Hongde; Hurlburt, Alexander J; Tennessen, Jason M (2018) A Drosophila model of combined D-2- and L-2-hydroxyglutaric aciduria reveals a mechanism linking mitochondrial citrate export with oncometabolite accumulation. Dis Model Mech 11:
Caridi, Christopher P; D'Agostino, Carla; Ryu, Taehyun et al. (2018) Nuclear F-actin and myosins drive relocalization of heterochromatic breaks. Nature 559:54-60
Yue, Yang; Blasius, T Lynne; Zhang, Stephanie et al. (2018) Altered chemomechanical coupling causes impaired motility of the kinesin-4 motors KIF27 and KIF7. J Cell Biol 217:1319-1334
Zhou, Li; Lim, Mandy Yu Theng; Kaur, Prameet et al. (2018) Importance of miRNA stability and alternative primary miRNA isoforms in gene regulation during Drosophila development. Elife 7:
Song, Wan; Zsindely, Nóra; Faragó, Anikó et al. (2018) Systematic genetic interaction studies identify histone demethylase Utx as potential target for ameliorating Huntington's disease. Hum Mol Genet 27:649-666

Showing the most recent 10 out of 90 publications