The Resource for Polymeric Biomaterials - RESBIO - integrates a new engineering approach to biomaterials discovery with state-of-the-art research in cell biology and computational modeling. Through this unique combination of disciplines, RESBIO contributes to a quantitative (rather than qualitative) understanding of cell-material interactions leading to the accelerated discovery of polymeric biomaterials with optimized properties for specific medical applications. RESBIO's research impacts the fields of biomaterials science, tissue engineering and regenerative medicine as well as the development of new medical implants and drug delivery systems. During its first funding period, RESBIO contributed to the development of a new hernia repair device (approved by FDA) and a new cardiovascular stent (expected to enter into clinical trials in the near future). In the next funding period, RESBIO will expand its R&D Core research program into new directions by (i) progressing from qualitative to quantitative characterization studies;(ii) advancing from 2D (flat) test systems to 3D model systems for the study of cell-material interactions;and (iii) incorporating the investigation of mechanical forces acting on cells and tissues. RESBIO will develop """"""""technology packages"""""""" that can be disseminated to and incorporated into the research activities of other laboratories through service, training and broad dissemination efforts. Core faculty are drawn from five institutions: Rutgers, the State University of New Jersey, University of Pennsylvania, Clemson University, University of Cambridge, UK and the National Institute of Standards and Technology. Seven proposed collaborative projects, diverse service interactions, and eight strategic alignments with major national research programs will strengthen RESBIO's impact on the field of biomaterials science.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Biotechnology Resource Grants (P41)
Project #
5P41EB001046-10
Application #
8298580
Study Section
Special Emphasis Panel (ZRG1-BST-G (40))
Program Officer
Hunziker, Rosemarie
Project Start
2008-04-07
Project End
2013-05-31
Budget Start
2012-06-01
Budget End
2013-05-31
Support Year
10
Fiscal Year
2012
Total Cost
$1,106,190
Indirect Cost
$229,460
Name
Rutgers University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
001912864
City
New Brunswick
State
NJ
Country
United States
Zip Code
08901
Singh, Sagar; Lo, Meng-Chen; Damodaran, Vinod B et al. (2016) Modeling the Insertion Mechanics of Flexible Neural Probes Coated with Sacrificial Polymers for Optimizing Probe Design. Sensors (Basel) 16:
Abramyan, Tigran M; Snyder, James A; Thyparambil, Aby A et al. (2016) Cluster analysis of molecular simulation trajectories for systems where both conformation and orientation of the sampled states are important. J Comput Chem 37:1973-82
Carlson, Aaron L; Bennett, Neal K; Francis, Nicola L et al. (2016) Generation and transplantation of reprogrammed human neurons in the brain using 3D microtopographic scaffolds. Nat Commun 7:10862
Lee, Esak; Song, H-H Greco; Chen, Christopher S (2016) Biomimetic on-a-chip platforms for studying cancer metastasis. Curr Opin Chem Eng 11:20-27
Dhaliwal, Anandika; Brenner, Matthew; Wolujewicz, Paul et al. (2016) Profiling stem cell states in three-dimensional biomaterial niches using high content image informatics. Acta Biomater 45:98-109
Clements, Basak Acan; Bushman, Jared; Murthy, N Sanjeeva et al. (2016) Design of barrier coatings on kink-resistant peripheral nerve conduits. J Tissue Eng 7:2041731416629471
Bennett, Neal K; Chmielowski, Rebecca; Abdelhamid, Dalia S et al. (2016) Polymer brain-nanotherapeutics for multipronged inhibition of microglial α-synuclein aggregation, activation, and neurotoxicity. Biomaterials 111:179-189
Li, Xianfeng; Murthy, N Sanjeeva; Becker, Matthew L et al. (2016) Multiscale approach for the construction of equilibrated all-atom models of a poly(ethylene glycol)-based hydrogel. Biointerphases 11:021002
Groen, Nathalie; Guvendiren, Murat; Rabitz, Herschel et al. (2016) Stepping into the omics era: Opportunities and challenges for biomaterials science and engineering. Acta Biomater 34:133-42
Pastino, Alexandra K; Greco, Todd M; Mathias, Rommel A et al. (2016) Stimulatory effects of advanced glycation endproducts (AGEs) on fibronectin matrix assembly. Matrix Biol :

Showing the most recent 10 out of 127 publications