High resolution images of molecular oxygenation images can provide crucial guides to the delivery and monitoring of cancer therapy. EPR imaging (EPRI) of oxygen provides a unique combination of spatial resolution, oxygen resolution, and uniform sensitivity with depth in tissue. This Center focuses on the optimization of In Vivo EPRI oxygen imaging anticipating human images. It is a consortium between the Universities of Chicago, Maryland and Denver. Successful images require coordinated development of instrumentation to obtain the images, spin probes to sample and report the tissue fluid environment and imaging strategies to optimally sample and analyze the information obtained. The Center is built on multidisciplinary effort from engineers, biologists, radiation oncologists, medical physicists, physical and organic chemists, statisticians and imaging mathematicians. In the past 21/2 years the Center 1) validated EPRI oxygen images point by point, 2) developed co-registration of oxygen with anatomy and other physiology, 3) increased animal tumor size imaged, 4) produced the first electron spin echo oxygen image nearly an order of magnitude faster than continuous wave (CW) acquisition, 5) developed a source of narrow line trityl spin probe capable of bulk synthesis, 6) synthesized persistent intracellular nitroxides and 7) radically altered reconstruction of images from projections allowing partial projections in even dimensions. These achievements directly improve spatial, oxygenation and/or temporal image resolution. Physiologically relevant resolution goals mandates improvement in resolution of EPRI oxygen images for small animals. This improvement will be necessary to scale to imaging larger volumes of tissue and tumor. We propose to: 1) Implement multiple techniques for CW acquisition to increase projection acquisition rate, select regions of interest and construct novel resonators 2) For pulsed image acquisition increase bandwidth and bandwidth uniformity as well as novel resonators and techniques to select regions of interest 3) Develop novel, even narrower line spin probes to with higher oxygen sensitivity 4) Build on the image acquisition and analysis progress. We hope to acquire a human image in the 5th year of support.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Biotechnology Resource Grants (P41)
Project #
5P41EB002034-13
Application #
8293269
Study Section
Special Emphasis Panel (ZRG1-SBIB-K (40))
Program Officer
Sastre, Antonio
Project Start
1999-09-30
Project End
2013-05-31
Budget Start
2012-06-01
Budget End
2013-05-31
Support Year
13
Fiscal Year
2012
Total Cost
$1,000,099
Indirect Cost
$196,446
Name
University of Chicago
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Biller, Joshua R; Mitchell, Deborah G; Tseytlin, Mark et al. (2016) Rapid Scan Electron Paramagnetic Resonance Opens New Avenues for Imaging Physiologically Important Parameters In Vivo. J Vis Exp :
Christodoulou, Anthony G; Redler, Gage; Clifford, Bryan et al. (2016) Fast dynamic electron paramagnetic resonance (EPR) oxygen imaging using low-rank tensors. J Magn Reson 270:176-82
Yang, Zhongyu; Bridges, Michael D; López, Carlos J et al. (2016) A triarylmethyl spin label for long-range distance measurement at physiological temperatures using T1 relaxation enhancement. J Magn Reson 269:50-4
Epel, Boris; Redler, Gage; Pelizzari, Charles et al. (2016) Approaching Oxygen-Guided Intensity-Modulated Radiation Therapy. Adv Exp Med Biol 876:185-93
Epel, Boris; Redler, Gage; Tormyshev, Victor et al. (2016) Towards Human Oxygen Images with Electron Paramagnetic Resonance Imaging. Adv Exp Med Biol 876:363-9
Tseytlin, Mark; Epel, Boris; Sundramoorthy, Subramanian et al. (2016) Decoupling of excitation and receive coils in pulsed magnetic resonance using sinusoidal magnetic field modulation. J Magn Reson 272:91-99
Trukhin, Dmitry V; Rogozhnikova, Olga Yu; Troitskaya, Tatiana I et al. (2016) Facile and High-Yielding Synthesis of TAM Biradicals and Monofunctional TAM Radicals. Synlett 27:893-899
Epel, Boris; Halpern, Howard J (2015) Comparison of pulse sequences for R1-based electron paramagnetic resonance oxygen imaging. J Magn Reson 254:56-61
Epel, Boris; Halpern, Howard J (2015) In Vivo pO2 Imaging of Tumors: Oxymetry with Very Low-Frequency Electron Paramagnetic Resonance. Methods Enzymol 564:501-27
Redler, Gage; Epel, Boris; Halpern, Howard J (2015) Maximally spaced projection sequencing in electron paramagnetic resonance imaging. Concepts Magn Reson Part B Magn Reson Eng 45:33-45

Showing the most recent 10 out of 115 publications