MIT Laser Biomedical Research Center (LBRC) provides state-of-the-art integrative photonic solutions for the biomedical community. The LBRC core facilities sit within the G.R. Harrison Spectroscopy Laboratory, which has a century-long history of innovation and provides a dynamic environment for cutting-edge technology development. Continually rejuvenated by this setting, the LBRC develops and disseminates photonic solutions that address complex problems in biological research, pharmaceutical development, and medical diagnosis. The LBRC has served the nation's biological and medical community as a NIH research resource for almost 30 years, and during this time, the LBRC has enabled a diverse range of research, both fundamental science and practical applications, serving investigators from cancer biology, cardiology, infectious disease, hematology, stem cell biology, and neurobiology. We successfully developed a technology research and development (TRD) program to advance biomedical imaging and diagnostic technologies using on fluorescent, interferometric, and vibronic spectroscopies. We have a proven track-record of building fruitful partnerships, with over sixty of our collaborative projects (CPs) and service projects (SPs) achieving research milestones in the past 4 years. Quantitatively, during this period, we have published over 100 peer reviewed papers with many in high impact journals, filed 8 patent disclosures, started three companies, trained 15 center staffed who left LBRC with good careers, trained over 50 staff in our collaborators' laboratories, and disseminated technologies through organizing over 50 seminars distributing their content online. In the next cycle, LBRC leadership team has formulated an innovative and ambitious plan to substantially enhance our expertise base by expanding from three to seven senior investigators including: Dr. Peter So (Director) is an expert in nonlinear spectroscopy & microscopy, Dr. Ramachandra Dasari (Associate Director), an expert in Raman spectroscopy, Dr. Moungi Bawendi (Associated Director), an expert in quantum dot bioimaging, Dr. Gabriela Schlau-Cohen, an expert in single molecule biophysics and ultrafast spectroscopy. Dr. Ishan Barman, an expert in surface enhanced Raman spectroscopy, Dr. Conor Evans, an expert in nonlinear Raman spectroscopy, and Dr. Zahid Yaqoob, an expert in interferometric technology. We plan to go forward into the next cycle with four TRDs: (1) fluorescence spectroscopy and microscopy techniques, (2) interferometric spectroscopy and microscopy techniques, (3) Raman spectroscopy and microscopy techniques, and (4) Next-generation nanoprobe toolkit for biomedical applications. While NIH BTRCs cover a broad range of technologies, there is unmet demand for development of optical contrast agents and nanoscale probes. Establishing the new TRD4 on nanoprobes addresses this need and enables tight integration with unique spectroscopic detection methods developed in TRD1, 2, & 3. In association with these TRDs, we have further established 19 CPs and 19 SPs working with our collaborators on diverse areas of exciting biomedical research.

Public Health Relevance

The LBRC is run by seven researchers with complementary expertise working to develop next generation biophotonics tools and to transfer these technologies to the laboratories or clinics of our collaborators.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZEB1)
Program Officer
Shabestari, Behrouz
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts Institute of Technology
Engineering (All Types)
Biomed Engr/Col Engr/Engr Sta
United States
Zip Code
Jin, Di; Sung, Yongjin; Lue, Niyom et al. (2017) Large population cell characterization using quantitative phase cytometer. Cytometry A 91:450-459
Abshire, James R; Rowlands, Christopher J; Ganesan, Suresh M et al. (2017) Quantification of labile heme in live malaria parasites using a genetically encoded biosensor. Proc Natl Acad Sci U S A 114:E2068-E2076
Bruns, Oliver T; Bischof, Thomas S; Harris, Daniel K et al. (2017) Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat Biomed Eng 1:
Yannas, Ioannis V; Tzeranis, Dimitrios S; So, Peter T C (2017) Regeneration of injured skin and peripheral nerves requires control of wound contraction, not scar formation. Wound Repair Regen 25:177-191
Hosseini, Poorya; Jin, Di; Yaqoob, Zahid et al. (2017) Single-shot dual-wavelength interferometric microscopy. Methods :
Winnard Jr, Paul T; Zhang, Chi; Vesuna, Farhad et al. (2017) Organ-specific isogenic metastatic breast cancer cell lines exhibit distinct Raman spectral signatures and metabolomes. Oncotarget 8:20266-20287
Ni, Ming; Zhuo, Shuangmu; So, Peter T C et al. (2017) Fluorescent probes for nanoscopy: four categories and multiple possibilities. J Biophotonics 10:11-23
Zheng, Cheng; Zhou, Renjie; Kuang, Cuifang et al. (2017) Digital micromirror device-based common-path quantitative phase imaging. Opt Lett 42:1448-1451
Rowlands, Christopher J; Park, Demian; Bruns, Oliver T et al. (2017) Wide-field three-photon excitation in biological samples. Light Sci Appl 6:e16255
Wei, He; Bruns, Oliver T; Kaul, Michael G et al. (2017) Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proc Natl Acad Sci U S A 114:2325-2330

Showing the most recent 10 out of 110 publications