MIT Laser Biomedical Research Center (LBRC) provides state-of-the-art integrative photonic solutions for the biomedical community. The LBRC core facilities sit within the G.R. Harrison Spectroscopy Laboratory, which has a century-long history of innovation and provides a dynamic environment for cutting-edge technology development. Continually rejuvenated by this setting, the LBRC develops and disseminates photonic solutions that address complex problems in biological research, pharmaceutical development, and medical diagnosis. The LBRC has served the nation's biological and medical community as a NIH research resource for almost 30 years, and during this time, the LBRC has enabled a diverse range of research, both fundamental science and practical applications, serving investigators from cancer biology, cardiology, infectious disease, hematology, stem cell biology, and neurobiology. We successfully developed a technology research and development (TRD) program to advance biomedical imaging and diagnostic technologies using on fluorescent, interferometric, and vibronic spectroscopies. We have a proven track-record of building fruitful partnerships, with over sixty of our collaborative projects (CPs) and service projects (SPs) achieving research milestones in the past 4 years. Quantitatively, during this period, we have published over 100 peer reviewed papers with many in high impact journals, filed 8 patent disclosures, started three companies, trained 15 center staffed who left LBRC with good careers, trained over 50 staff in our collaborators' laboratories, and disseminated technologies through organizing over 50 seminars distributing their content online. In the next cycle, LBRC leadership team has formulated an innovative and ambitious plan to substantially enhance our expertise base by expanding from three to seven senior investigators including: Dr. Peter So (Director) is an expert in nonlinear spectroscopy & microscopy, Dr. Ramachandra Dasari (Associate Director), an expert in Raman spectroscopy, Dr. Moungi Bawendi (Associated Director), an expert in quantum dot bioimaging, Dr. Gabriela Schlau-Cohen, an expert in single molecule biophysics and ultrafast spectroscopy. Dr. Ishan Barman, an expert in surface enhanced Raman spectroscopy, Dr. Conor Evans, an expert in nonlinear Raman spectroscopy, and Dr. Zahid Yaqoob, an expert in interferometric technology. We plan to go forward into the next cycle with four TRDs: (1) fluorescence spectroscopy and microscopy techniques, (2) interferometric spectroscopy and microscopy techniques, (3) Raman spectroscopy and microscopy techniques, and (4) Next-generation nanoprobe toolkit for biomedical applications. While NIH BTRCs cover a broad range of technologies, there is unmet demand for development of optical contrast agents and nanoscale probes. Establishing the new TRD4 on nanoprobes addresses this need and enables tight integration with unique spectroscopic detection methods developed in TRD1, 2, & 3. In association with these TRDs, we have further established 19 CPs and 19 SPs working with our collaborators on diverse areas of exciting biomedical research.

Public Health Relevance

The LBRC is run by seven researchers with complementary expertise working to develop next generation biophotonics tools and to transfer these technologies to the laboratories or clinics of our collaborators.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZEB1)
Program Officer
Shabestari, Behrouz
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts Institute of Technology
Engineering (All Types)
Biomed Engr/Col Engr/Engr Sta
United States
Zip Code
Carr, Jessica A; Valdez, Tulio A; Bruns, Oliver T et al. (2016) Using the shortwave infrared to image middle ear pathologies. Proc Natl Acad Sci U S A 113:9989-94
Hosseini, Poorya; Zhou, Renjie; Kim, Yang-Hyo et al. (2016) Pushing phase and amplitude sensitivity limits in interferometric microscopy. Opt Lett 41:1656-9
Tzeranis, Dimitrios S; Soller, Eric C; Buydash, Melissa C et al. (2016) In Situ Quantification of Surface Chemistry in Porous Collagen Biomaterials. Ann Biomed Eng 44:803-15
Haka, Abigail S; Sue, Erika; Zhang, Chi et al. (2016) Noninvasive Detection of Inflammatory Changes in White Adipose Tissue by Label-Free Raman Spectroscopy. Anal Chem 88:2140-8
Anderson, T Anthony; Kang, Jeon Woong; Gubin, Tatyana et al. (2016) Raman Spectroscopy Differentiates Each Tissue from the Skin to the Spinal Cord: A Novel Method for Epidural Needle Placement? Anesthesiology 125:793-804
Vegas, Arturo J; Veiseh, Omid; Doloff, Joshua C et al. (2016) Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat Biotechnol 34:345-52
Hosseini, Poorya; Abidi, Sabia Z; Du, E et al. (2016) Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease. Proc Natl Acad Sci U S A 113:9527-32
Villa, Katherine L; Berry, Kalen P; Subramanian, Jaichandar et al. (2016) Inhibitory Synapses Are Repeatedly Assembled and Removed at Persistent Sites In Vivo. Neuron 89:756-69
Franke, Daniel; Harris, Daniel K; Chen, Ou et al. (2016) Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared. Nat Commun 7:12749
Wang, Taejun; Jang, Won Hyuk; Lee, Seunghun et al. (2016) Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging. Sci Rep 6:27142

Showing the most recent 10 out of 91 publications