We are requesting continuation of funds for the National Biomedical Resource Center in Image-guided Therapy (NCIGT) at the Brigham &Women's Hospital. The Center provides a unique, centralized infrastructure for translational research in the area of image-guided therapy. The multidisciplinary program involves clinical investigators, biomedical engineers, and basic scientists in promoting and advancing IGT methods and related innovative clinical applications. We will develop and make available new, clinically relevant technologies in six discrete TRD Core Projects: 1) Computational Core;2) Imaging Core;3) Image-Guidance Core;4) Neurosurgery Core;5) Prostate Core and 6) Focused Ultrasound Therapy Core. These key research initiatives represent the technical and clinical infrastructure of the Resource. They are anticipated to have significant effect on several future IGT methods and clinical applications. We will combine forces with 7 independently funded Collaborations (DBPs) that address various essential technical or clinical aspects of IGT and our contribution will have significant clinical impact. Our goal is to combine current advances in the field of imaging (like Molecular Imaging, Functional and Metabolic Imaging) with advanced therapies (like MRI-guided Focused Ultrasound ablation or targeted drug delivery, endoscopic surgery or robotics) to achieve less invasive, safer and more effective therapeutic options. All IGT developments and applications will be tested and validated either on our site or at our collaborators, or distributed directly as a service to the growing IGT community. Our overarching goal is to continue being the leading National Center that reaching effectively across a broad range of constituencies through service, training and dissemination of the novel technologies and methods under development In this Resource.

Public Health Relevance

The overarching impetus for this application is to advance and propagate novel image-guided therapy technologies, effectively producing strengthened multidisciplinary research efforts and an infrastructure commensurate with sophisticated technology development. We are also committed to making our technology broadly available to a large community of clinician. Our mission is to develop and implement novel, innovative technologies to decrease the invasiveness of surgeries and interventions.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Biotechnology Resource Grants (P41)
Project #
5P41EB015898-09
Application #
8516366
Study Section
Special Emphasis Panel (ZRG1-SBIB-L (40))
Program Officer
Krosnick, Steven
Project Start
2004-04-01
Project End
2015-07-31
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
9
Fiscal Year
2013
Total Cost
$2,609,855
Indirect Cost
$1,147,752
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Toews, Matthew; Wells, William M (2018) Phantomless Auto-Calibration and Online Calibration Assessment for a Tracked Freehand 2-D Ultrasound Probe. IEEE Trans Med Imaging 37:262-272
Black, David; Unger, Michael; Fischer, Nele et al. (2018) Auditory display as feedback for a novel eye-tracking system for sterile operating room interaction. Int J Comput Assist Radiol Surg 13:37-45
Stefanik, Laura; Erdman, Lauren; Ameis, Stephanie H et al. (2018) Brain-Behavior Participant Similarity Networks Among Youth and Emerging Adults with Schizophrenia Spectrum, Autism Spectrum, or Bipolar Disorder and Matched Controls. Neuropsychopharmacology 43:1180-1188
Silva, Michael A; See, Alfred P; Essayed, Walid I et al. (2018) Challenges and techniques for presurgical brain mapping with functional MRI. Neuroimage Clin 17:794-803
Herrmann, Markus D; Clunie, David A; Fedorov, Andriy et al. (2018) Implementing the DICOM Standard for Digital Pathology. J Pathol Inform 9:37
Langkilde, Fredrik; Kobus, Thiele; Fedorov, Andriy et al. (2018) Evaluation of fitting models for prostate tissue characterization using extended-range b-factor diffusion-weighted imaging. Magn Reson Med 79:2346-2358
Fedorov, Andriy; Schwier, Michael; Clunie, David et al. (2018) An annotated test-retest collection of prostate multiparametric MRI. Sci Data 5:180281
Randall, Elizabeth C; Emdal, Kristina B; Laramy, Janice K et al. (2018) Integrated mapping of pharmacokinetics and pharmacodynamics in a patient-derived xenograft model of glioblastoma. Nat Commun 9:4904
Gao, Wenpeng; Jiang, Baichuan; Kacher, Daniel F et al. (2018) Real-time probe tracking using EM-optical sensor for MRI-guided cryoablation. Int J Med Robot 14:
King, Martin T; Nguyen, Paul L; Boldbaatar, Ninjin et al. (2018) Long-term outcomes of partial prostate treatment with magnetic resonance imaging-guided brachytherapy for patients with favorable-risk prostate cancer. Cancer 124:3528-3535

Showing the most recent 10 out of 286 publications