The Resource for Quantitative Functional Magnetic Resonance Imaging is an interdepartmental and interdisciplinary laboratory combining facilities of the F.M. Kirby Research Center for Functional Brain Imaging at the Hugo Moser Research Institute at Kennedy Krieger (KKI) and the Center for Imaging Science (CIS) at Johns Hopkins University (JHU). This Resource Center is dedicated to using its unique expertise to design novel MRI and MRS data acquisition and processing technology in order to facilitate the biomedical research of a large community of clinicians and neuroscientists in Maryland and throughout the USA, with a special focus on brain development, i.e. the changing brain throughout our life span. These NIH-funded driving biomedical projects have a continued need for the development of new quantitative technology to better achieve the aims in their grants, which focus on topics such as learning disabilities, impaired brain development, inherited metabolic disorders, attention deficit, neurodegeneration, multiple sclerosis, schizophrenia, and cancer. The Kirby Center has 3T and 7T state of the art scanners equipped with parallel imaging capabilities (8, 16, and 32-channel receive coils), and a dual transmit body coil at 3T. The 7T is to be extended with a 8-channel multi-transmit system. CIS has an IBM supercomputer that is part of a national supercomputing infrastructure. Our Resource combines a strong technical environment with unique expertise of the collaborators in our driving biomedical projects, who are continuously asking questions to improve technology for their studies in children, the elderly, and subjects with neurological and psychiatric disorders. These needs are reflected in the proposed developments in our technical research and development (TR&D) projects that focus on MRI and MR spectroscopy (MRS) assessment of tissue changes in metabolite levels, structure, physiology, and brain functioning when the brain is changing size during development. The resource provides training in these new acquisition and processing technologies and has a longstanding history of disseminating them to other research centers and hospitals.

Public Health Relevance

The goal of the resource, now in its 10th year, is to develop technologies that allow quantitative measurement of MRI biomarkers for tracking changes in brain anatomy, function, metabolism and physiology. These developments are driven by the needs of our associated biomedical projects, who are studying impaired brain development, neurodegeneration.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Biotechnology Resource Grants (P41)
Project #
8P41EB015909-12
Application #
8327795
Study Section
Special Emphasis Panel (ZRG1-SBIB-N (40))
Program Officer
Liu, Guoying
Project Start
2000-07-01
Project End
2016-08-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
12
Fiscal Year
2012
Total Cost
$1,371,516
Indirect Cost
$425,999
Name
Hugo W. Moser Research Institute Kennedy Krieger
Department
Type
DUNS #
155342439
City
Baltimore
State
MD
Country
United States
Zip Code
21205
Fisher, Aaron; Caffo, Brian; Schwartz, Brian et al. (2016) Fast, Exact Bootstrap Principal Component Analysis for p > 1 million. J Am Stat Assoc 111:846-860
Zheng, Yang; Wang, Xiaoming; Zhao, Xuna (2016) Magnetization Transfer and Amide Proton Transfer MRI of Neonatal Brain Development. Biomed Res Int 2016:3052723
Wu, Dan; Ceritoglu, Can; Miller, Michael I et al. (2016) Direct estimation of patient attributes from anatomical MRI based on multi-atlas voting. Neuroimage Clin 12:570-581
Heba, Stefanie; Puts, Nicolaas A J; Kalisch, Tobias et al. (2016) Local GABA Concentration Predicts Perceptual Improvements After Repetitive Sensory Stimulation in Humans. Cereb Cortex 26:1295-301
Li, Xu; Allen, Richard P; Earley, Christopher J et al. (2016) Brain iron deficiency in idiopathic restless legs syndrome measured by quantitative magnetic susceptibility at 7 tesla. Sleep Med 22:75-82
Ravi, Harshan; Liu, Peiying; Peng, Shin-Lei et al. (2016) Simultaneous multi-slice (SMS) acquisition enhances the sensitivity of hemodynamic mapping using gas challenges. NMR Biomed 29:1511-1518
Qin, Qin; Shin, Taehoon; Schär, Michael et al. (2016) Velocity-selective magnetization-prepared non-contrast-enhanced cerebral MR angiography at 3 Tesla: Improved immunity to B0/B1 inhomogeneity. Magn Reson Med 75:1232-41
Su, Pan; Mao, Deng; Liu, Peiying et al. (2016) Multiparametric estimation of brain hemodynamics with MR fingerprinting ASL. Magn Reson Med :
Heo, Hye-Young; Lee, Dong-Hoon; Zhang, Yi et al. (2016) Insight into the quantitative metrics of chemical exchange saturation transfer (CEST) imaging. Magn Reson Med :
Heo, Hye-Young; Jones, Craig K; Hua, Jun et al. (2016) Whole-brain amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging in glioma patients using low-power steady-state pulsed chemical exchange saturation transfer (CEST) imaging at 7T. J Magn Reson Imaging 44:41-50

Showing the most recent 10 out of 296 publications