Technology Research and Development Project #2 Radiofrequency Field Interactions with Tissue: New Tools for RF Design, Safety, and Control TR&D #2 Principal Investigators: Christopher M. Collins, PhD and Graham C. Wiggins, D Phil The broad mission of our Center for Advanced Imaging Innovation and Research (CAI2R) is to bring together collaborative translational research teams for the development of high-impact biomedical imaging technologies, with the ultimate goal of changing day-to-day clinical practice. Technology Research and Development (TR&D) project #2 envisions new and improved uses for radiofrequency (RF) fields, providing new tools for RF design, safety and control in MRI, and expanding the reach of the rapid continuous acquisition approach developed in TR&D #1 to high-performance high-field applications.
Specific aims are as follows: (1) RF Design: Develop novel RF detectors and transmitters together with tools for rational RF coil design and evaluation (2) RF Safety: Develop novel techniques for monitoring and prediction of RF energy deposition (3) RF Control: Develop tools for practical parallel RF transmission and clinical ultra-high-field MRI

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Biotechnology Resource Grants (P41)
Project #
1P41EB017183-01A1
Application #
8794074
Study Section
Special Emphasis Panel (ZEB1-OSR-E (O1))
Project Start
Project End
Budget Start
2014-09-30
Budget End
2015-07-31
Support Year
1
Fiscal Year
2014
Total Cost
$550,194
Indirect Cost
$98,532
Name
New York University
Department
Type
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Ostenson, Jason; Pujara, Akshat C; Mikheev, Artem et al. (2016) Voxelwise analysis of simultaneously acquired and spatially correlated (18) F-fluorodeoxyglucose (FDG)-PET and intravoxel incoherent motion metrics in breast cancer. Magn Reson Med :
Bin Zahid, Abdullah; Mikheev, Artem; Srivatsa, Neha et al. (2016) Accelerated Brain Atrophy on Serial Computed Tomography: Potential Marker of the Progression of Alzheimer Disease. J Comput Assist Tomogr 40:827-32
Wile, Daryl J; Dinelle, Katie; Vafai, Nasim et al. (2016) A scan without evidence is not evidence of absence: Scans without evidence of dopaminergic deficit in a symptomatic leucine-rich repeat kinase 2 mutation carrier. Mov Disord 31:405-9
Alon, Leeor; Deniz, Cem Murat; Carluccio, Giuseppe et al. (2016) Effects of Anatomical Differences on Electromagnetic Fields, SAR, and Temperature Change. Concepts Magn Reson Part B Magn Reson Eng 46:8-18
Ben-Eliezer, Noam; Sodickson, Daniel K; Shepherd, Timothy et al. (2016) Accelerated and motion-robust in vivo T2 mapping from radially undersampled data using bloch-simulation-based iterative reconstruction. Magn Reson Med 75:1346-54
Axel, Leon; Otazo, Ricardo (2016) Accelerated MRI for the assessment of cardiac function. Br J Radiol 89:20150655
Koesters, Thomas; Friedman, Kent P; Fenchel, Matthias et al. (2016) Dixon Sequence with Superimposed Model-Based Bone Compartment Provides Highly Accurate PET/MR Attenuation Correction of the Brain. J Nucl Med 57:918-24
Hoch, M J; Chung, S; Ben-Eliezer, N et al. (2016) New Clinically Feasible 3T MRI Protocol to Discriminate Internal Brain Stem Anatomy. AJNR Am J Neuroradiol 37:1058-65
Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume et al. (2016) A flexible nested sodium and proton coil array with wideband matching for knee cartilage MRI at 3T. Magn Reson Med 76:1325-34
Benkert, Thomas; Feng, Li; Sodickson, Daniel K et al. (2016) Free-breathing volumetric fat/water separation by combining radial sampling, compressed sensing, and parallel imaging. Magn Reson Med :

Showing the most recent 10 out of 71 publications