Training and Dissemination CAI2R Training and Dissemination Principal Investigators: Riccardo Lattanzi, PhD (Training) and Tobias Block, PhD (Dissemination) The broad mission of our Center for Advanced Imaging Innovation and Research (CAI2R) is to bring together collaborative translational research teams for the development of high-impact biomedical imaging technologies, with the ultimate goal of changing day-to-day clinical practice. The Training activities of CAI2R are addressed at educating students and collaborators in the best use of our technologies, and also at investigating and sharing best practices in the formation and operation of successful translational research teams. Our Dissemination activities, meanwhile, aim to maximize the availability and impact of our technologies, through both academic and industrial pathways.
Specific aims are as follows: (1) To provide students and collaborators with hands-on translational and clinical research training. (2) To offer the embedded multidisciplinary interaction that is a foundation of CAI2R to outside collaborators and users. (3) To provide source code and software resources openly to the academic research community and to stimulate inter-institutional collaboration. (4) To integrate industrial partners into the onsite development process, providing immediate clinical feedback and accelerating commercial adoption of new imaging techniques and technologies.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZEB1-OSR-E (O1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
New York University
New York
United States
Zip Code
Ostenson, Jason; Pujara, Akshat C; Mikheev, Artem et al. (2016) Voxelwise analysis of simultaneously acquired and spatially correlated (18) F-fluorodeoxyglucose (FDG)-PET and intravoxel incoherent motion metrics in breast cancer. Magn Reson Med :
Bin Zahid, Abdullah; Mikheev, Artem; Srivatsa, Neha et al. (2016) Accelerated Brain Atrophy on Serial Computed Tomography: Potential Marker of the Progression of Alzheimer Disease. J Comput Assist Tomogr 40:827-32
Wile, Daryl J; Dinelle, Katie; Vafai, Nasim et al. (2016) A scan without evidence is not evidence of absence: Scans without evidence of dopaminergic deficit in a symptomatic leucine-rich repeat kinase 2 mutation carrier. Mov Disord 31:405-9
Alon, Leeor; Deniz, Cem Murat; Carluccio, Giuseppe et al. (2016) Effects of Anatomical Differences on Electromagnetic Fields, SAR, and Temperature Change. Concepts Magn Reson Part B Magn Reson Eng 46:8-18
Ben-Eliezer, Noam; Sodickson, Daniel K; Shepherd, Timothy et al. (2016) Accelerated and motion-robust in vivo T2 mapping from radially undersampled data using bloch-simulation-based iterative reconstruction. Magn Reson Med 75:1346-54
Axel, Leon; Otazo, Ricardo (2016) Accelerated MRI for the assessment of cardiac function. Br J Radiol 89:20150655
Koesters, Thomas; Friedman, Kent P; Fenchel, Matthias et al. (2016) Dixon Sequence with Superimposed Model-Based Bone Compartment Provides Highly Accurate PET/MR Attenuation Correction of the Brain. J Nucl Med 57:918-24
Hoch, M J; Chung, S; Ben-Eliezer, N et al. (2016) New Clinically Feasible 3T MRI Protocol to Discriminate Internal Brain Stem Anatomy. AJNR Am J Neuroradiol 37:1058-65
Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume et al. (2016) A flexible nested sodium and proton coil array with wideband matching for knee cartilage MRI at 3T. Magn Reson Med 76:1325-34
Benkert, Thomas; Feng, Li; Sodickson, Daniel K et al. (2016) Free-breathing volumetric fat/water separation by combining radial sampling, compressed sensing, and parallel imaging. Magn Reson Med :

Showing the most recent 10 out of 71 publications