Glycosaminoglycans (GAGs), such as heparin, heparan sulfate (HS), and chondroitin sulfate (CS), are naturally occurring polydisperse linear polysaccharides that are heavily O- and N-sulfated. The interaction between GAGs and proteins are critical for many biological processes including cell-cell and cell-matrix interactions, cell migration and proliferation, growth factor sequestration, chemokine and cytokine activation, microbial recognition and tissue morphogenesis during embryonic development. Hundreds of HS-binding proteins have been identified, but the oligosaccharide structure that mediates a particular interaction has been defined in only a few cases due to the structural complexity of HS. In this Technology Research and Development (TR&D2) project, three teams of investigators, representing skills in the areas of nuclear magnetic resonance (NMR), mass spectrometry (MS) and computational biology, will work cooperatively to develop new technologies for the structural characterization of glycosaminoglycan (GAG)-protein complexes and protein-protein complexes that are induced by the presence of GAGs. Their efforts will be guided by the needs of driving biomedical projects (DBPs) that span systems related to cell migration, cell signaling, and the maintenance of cellular integrity. These projects share complexities in the size of the systems involved, the heterogeneity of the interacting GAGs, and the post-translational modification of the proteins. These complexities dictate the development of novel technologies, often in cooperation with other TR&D groups of this Research Resource.
Specific Aims i nclude:
Aim 1. Developing NMR Approaches to Protein-GAG and Protein-Protein Complexes including approaches for identification of bound ligand geometries and interaction motifs and approaches for characterization of protein-protein and GAG-protein complexes, Aim 2. Developing Hydroxyl Radical Protein Footprinting (HRPF) for the structural characterization of Protein-GAG Complexes including technology to improve the sequence coverage of high spatial resolution HRPF, development of HRPF technologies for the analysis of protein-GAG interaction interfaces, and development of HRPF technologies for the analysis of protein-protein interaction interfaces, Aim 3. Developing Computer Modeling approaches for GAGs, Proteoglycans, and GAG-Protein complexes, including optimizing docking algorithms for use with GAGs, adapting the GLYCAM force field and develop suitable protocols to improve energy representation of GAGs

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Biotechnology Resource Grants (P41)
Project #
5P41GM103390-30
Application #
9644077
Study Section
Special Emphasis Panel (ZRG1)
Project Start
Project End
2021-01-31
Budget Start
2019-02-01
Budget End
2020-01-31
Support Year
30
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Georgia
Department
Type
DUNS #
004315578
City
Athens
State
GA
Country
United States
Zip Code
30602
Li, Qianjin; Alsaidan, Omar A; Rai, Sumit et al. (2018) Stromal Gli signaling regulates the activity and differentiation of prostate stem and progenitor cells. J Biol Chem 293:10547-10560
Wu, Zhengliang L; Person, Anthony D; Anderson, Matthew et al. (2018) Imaging specific cellular glycan structures using glycosyltransferases via click chemistry. Glycobiology 28:69-79
Ferreira, Roux-Cil; Grant, Oliver C; Moyo, Thandeka et al. (2018) Structural Rearrangements Maintain the Glycan Shield of an HIV-1 Envelope Trimer After the Loss of a Glycan. Sci Rep 8:15031
Chen, Hao; Ambadapadi, Sriram; Wakefield, Dara et al. (2018) Selective Deletion of Heparan Sulfotransferase Enzyme, Ndst1, in Donor Endothelial and Myeloid Precursor Cells Significantly Decreases Acute Allograft Rejection. Sci Rep 8:13433
Makeneni, Spandana; Thieker, David F; Woods, Robert J (2018) Applying Pose Clustering and MD Simulations To Eliminate False Positives in Molecular Docking. J Chem Inf Model 58:605-614
Abolhasani Khaje, Niloofar; Mobley, Charles K; Misra, Sandeep K et al. (2018) Variation in FPOP Measurements Is Primarily Caused by Poor Peptide Signal Intensity. J Am Soc Mass Spectrom 29:1901-1907
Sanderson, Patience; Stickney, Morgan; Leach 3rd, Franklin E et al. (2018) Heparin/heparan sulfate analysis by covalently modified reverse polarity capillary zone electrophoresis-mass spectrometry. J Chromatogr A 1545:75-83
Liu, Lin; Prudden, Anthony R; Capicciotti, Chantelle J et al. (2018) Streamlining the chemoenzymatic synthesis of complex N-glycans by a stop and go strategy. Nat Chem :
Briard, Jennie Grace; Jiang, Hao; Moremen, Kelley W et al. (2018) Cell-based glycan arrays for probing glycan-glycan binding protein interactions. Nat Commun 9:880
Muchero, Wellington; Sondreli, Kelsey L; Chen, Jin-Gui et al. (2018) Association mapping, transcriptomics, and transient expression identify candidate genes mediating plant-pathogen interactions in a tree. Proc Natl Acad Sci U S A 115:11573-11578

Showing the most recent 10 out of 246 publications