The National Magnetic Resonance Facility at Madison (NMRFAM) is a resource for biomolecular nuclear magnetic resonance (NMR) spectroscopy. NMRFAM aims to expand the frontiers of biomolecular NMR spectroscopy through resource technology and development programs in the important areas of (1) high-throughput determination of structures and functions of smaller proteins and RNA molecules, (2) technology for investigating the structure and dynamics of challenging systems, including complexes, membrane proteins, paramagnetic proteins, and larger RNA molecules, and (3) efficient approaches to metabolomics and natural product analysis. NMRFAM strives to be a model to the larger biological community for cutting-edge capabilities of NMR spectroscopy. With the goal of broadening the scope of its scientific activities, NMRFAM hosts distinguished visiting scientists working in areas related to its research technology and development projects. NMRFAM develops and disseminates advanced approaches that cover all steps in biomolecular NMR investigations and offers start-to-finish support for biomedical NMR investigations with assistance in one or more of the following steps: (1) strategy evaluation and experiment design, (2) sample preparaton, (3) feasibility studies, (4) data collection, (5) data analysis and structure determination, (6) data validation and deposition, and (7) manuscript preparation. NMRFAM provides researchers with resources matched to their particular needs in their search for new knowledge. A major goal is to develop methods for making these investigations faster and less costly as well as applicable to larger classes of proteins and nucleic acids of importance in human health. NMRFAM provides young investigators and experienced spectroscopists access to state-of-the-art instrumentation with support for multiple modes of data collection either as service or collaborative projects. Protocols, pulse sequences, software tools, and databases developed through NMRFAM's research activities are made available to the general scientific community. Users receive hands-on training at the center. As another means for training its user base and for disseminating its novel technology, NMRFAM conducts annual workshops and group training sessions. Additional mechanisms used to disseminate NMRFAM technology include quarterly newsletters, the NMRFAM website, software servers, a metabolomics database, presentations at meetings, and the publication of articles and reviews.

Public Health Relevance

Biomolecular nuclear magnetic resonance spectroscopy is the single approach that offers the most detailed information about biomolecules in solution, the milieu in which they normally function. NMR enables the discovery of three-dimensional structure, molecular dynamics, and molecular interactions-factors that reveal how biological systems work, are impacted by genetic and environmental factors, and respond to drugs.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Biotechnology Resource Grants (P41)
Project #
5P41GM103399-28
Application #
8457053
Study Section
Special Emphasis Panel (ZRG1-BCMB-H (40))
Program Officer
Friedman, Fred K
Project Start
1997-03-01
Project End
2015-02-28
Budget Start
2013-03-01
Budget End
2014-02-28
Support Year
28
Fiscal Year
2013
Total Cost
$1,096,837
Indirect Cost
$356,474
Name
University of Wisconsin Madison
Department
Biochemistry
Type
Schools of Earth Sciences/Natur
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Travers, Timothy; López, Cesar A; Van, Que N et al. (2018) Molecular recognition of RAS/RAF complex at the membrane: Role of RAF cysteine-rich domain. Sci Rep 8:8461
Rhoads, Timothy W; Burhans, Maggie S; Chen, Vincent B et al. (2018) Caloric Restriction Engages Hepatic RNA Processing Mechanisms in Rhesus Monkeys. Cell Metab 27:677-688.e5
Cai, Kai; Frederick, Ronnie O; Tonelli, Marco et al. (2018) Interactions of iron-bound frataxin with ISCU and ferredoxin on the cysteine desulfurase complex leading to Fe-S cluster assembly. J Inorg Biochem 183:107-116
Yu, Corey H; Lee, Woonghee; Nokhrin, Sergiy et al. (2018) The Structure of Metal Binding Domain 1 of the Copper Transporter ATP7B Reveals Mechanism of a Singular Wilson Disease Mutation. Sci Rep 8:581
Pierson, Hannah E; Kaler, Mandeep; O'Grady, Christopher et al. (2018) Engineered Protein Model of the ATP synthase H+- Channel Shows No Salt Bridge at the Rotor-Stator Interface. Sci Rep 8:11361
Thomas, Nathan E; Wu, Chao; Morrison, Emma A et al. (2018) The C terminus of the bacterial multidrug transporter EmrE couples drug binding to proton release. J Biol Chem 293:19137-19147
Assadi-Porter, Fariba M; Radek, James; Rao, Hongyu et al. (2018) Multimodal Ligand Binding Studies of Human and Mouse G-Coupled Taste Receptors to Correlate Their Species-Specific Sweetness Tasting Properties. Molecules 23:
Yang, Yifang; Cornilescu, Gabriel; Tal-Gan, Yftah (2018) Structural Characterization of Competence-Stimulating Peptide Analogues Reveals Key Features for ComD1 and ComD2 Receptor Binding in Streptococcus pneumoniae. Biochemistry 57:5359-5369
Slosarek, Erin L; Schuh, Amber L; Pustova, Iryna et al. (2018) Pathogenic TFG Mutations Underlying Hereditary Spastic Paraplegia Impair Secretory Protein Trafficking and Axon Fasciculation. Cell Rep 24:2248-2260
Cai, Kai; Frederick, Ronnie O; Tonelli, Marco et al. (2018) ISCU(M108I) and ISCU(D39V) Differ from Wild-Type ISCU in Their Failure To Form Cysteine Desulfurase Complexes Containing Both Frataxin and Ferredoxin. Biochemistry 57:1491-1500

Showing the most recent 10 out of 169 publications