This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Notwithstanding well-known algorithmic weaknesses, molecular docking screens have had important successes in recent years. Like other screening techniques, the goal is to discover novel ligands. False negatives are tolerated, and the emphasis on screening available compounds makes false positives cheap. Docking is now the most practical technique to leverage structure for ligand discovery. Unfortunately, barriers to entry have largely restricted the technique to experts and their collaborators. Docking databases are expensive to acquire, require considerable manipulation, and the software is byzantine. This has diminished the impact of the technique and limited the sorts of problems to which it can be applied. We propose to develop tools and databases that will bring docking to a broad audience, and allow its application to new questions.
The first aim i s to develop databases and tools that an educated non-expert can use via a web-based application, in the spirit of BLAST. This admittedly goal-oriented aim would provide an enabling technology that would have much impact.
The second aim i s hypothesis driven: we investigate using docking screening results to fingerprint binding sites for recognition and potentially function.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001081-34
Application #
8363598
Study Section
Special Emphasis Panel (ZRG1-BST-D (40))
Project Start
2011-07-01
Project End
2012-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
34
Fiscal Year
2011
Total Cost
$16,768
Indirect Cost
Name
University of California San Francisco
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Viswanath, Shruthi; Chemmama, Ilan E; Cimermancic, Peter et al. (2017) Assessing Exhaustiveness of Stochastic Sampling for Integrative Modeling of Macromolecular Structures. Biophys J 113:2344-2353
Chu, Shidong; Zhou, Guangyan; Gochin, Miriam (2017) Evaluation of ligand-based NMR screening methods to characterize small molecule binding to HIV-1 glycoprotein-41. Org Biomol Chem 15:5210-5219
Portioli, Corinne; Bovi, Michele; Benati, Donatella et al. (2017) Novel functionalization strategies of polymeric nanoparticles as carriers for brain medications. J Biomed Mater Res A 105:847-858
Nguyen, Hai Dang; Yadav, Tribhuwan; Giri, Sumanprava et al. (2017) Functions of Replication Protein A as a Sensor of R Loops and a Regulator of RNaseH1. Mol Cell 65:832-847.e4
Alamo, Lorenzo; Koubassova, Natalia; Pinto, Antonio et al. (2017) Lessons from a tarantula: new insights into muscle thick filament and myosin interacting-heads motif structure and function. Biophys Rev 9:461-480
Sofiyev, Vladimir; Kaur, Hardeep; Snyder, Beth A et al. (2017) Enhanced potency of bivalent small molecule gp41 inhibitors. Bioorg Med Chem 25:408-420
Parsonage, Derek; Sheng, Fang; Hirata, Ken et al. (2016) X-ray structures of thioredoxin and thioredoxin reductase from Entamoeba histolytica and prevailing hypothesis of the mechanism of Auranofin action. J Struct Biol 194:180-90
Nekouzadeh, Ali; Rudy, Yoram (2016) Conformational changes of an ion-channel during gating and emerging electrophysiologic properties: Application of a computational approach to cardiac Kv7.1. Prog Biophys Mol Biol 120:18-27
Forman, Stuart A; Miller, Keith W (2016) Mapping General Anesthetic Sites in Heteromeric ?-Aminobutyric Acid Type A Receptors Reveals a Potential For Targeting Receptor Subtypes. Anesth Analg 123:1263-1273
Sathyanarayana, Bangalore K; Li, Peng; Lin, Jian-Xin et al. (2016) Molecular Models of STAT5A Tetramers Complexed to DNA Predict Relative Genome-Wide Frequencies of the Spacing between the Two Dimer Binding Motifs of the Tetramer Binding Sites. PLoS One 11:e0160339

Showing the most recent 10 out of 503 publications