This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. This project involves the development of a new type of high-resolution functional imaging device. It combines 2-photon microscopy (TPM) and optical coherence tomography (OCT) into a single platform. These methods both utilize ultrashort-pulse near-infrared laser technologies and require beam scanning to form images. However, the information content in OCT is derived from scattered light, whereas TPM signals originate from non-linear electronic excitation of fluorescence. Together, they constitute the intravital microscope equivalent of a phase contrast and fluorescence overlay image in a single cell. But with TPM/OCT, tomographic images can be formed at depths of 0.5-1 mm in tissue. Recently, a French group demonstrated, for the first time, that it is possible to design a system that combines the 2 approaches. We propose to take this work several steps further by incorporating key optical design elements that will optimize our sensitivity to cancer relevant pro cess es. Our intravital functional imager will be capable of simultaneously imaging neovascular structure, blood flow direction/velocity, extracellular matrix structure (collagen/elastin fibers), and cellular redox state (e.g. oxidative stress). These images will be formed from intrinsic signals, i.e. interferograms and 2-photon excited autofluorescence, without the addition of exogenous dyes/probes. However the system can also be used with added chromophores such as fluorescent dyes and gene expression probes (GFP, etc). Images will be rendered in real time; so live animal model studies can be conducted in model tumor systems simply by placing the subject on an imaging stage. In addition, the instrument will be constructed so that studies of human skin lesions can be performed in vivo, with the goal of developing a technique that provides information comparable to histopathology.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-SBIB-L (40))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Irvine
Schools of Medicine
United States
Zip Code
Malacrida, Leonel; Astrada, Soledad; Briva, Arturo et al. (2016) Spectral phasor analysis of LAURDAN fluorescence in live A549 lung cells to study the hydration and time evolution of intracellular lamellar body-like structures. Biochim Biophys Acta 1858:2625-2635
Choi, Bernard; Tan, Wenbin; Jia, Wangcun et al. (2016) The Role of Laser Speckle Imaging in Port-Wine Stain Research: Recent Advances and Opportunities. IEEE J Sel Top Quantum Electron 2016:
Alfonso-García, Alba; Pfisterer, Simon G; Riezman, Howard et al. (2016) D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage. J Biomed Opt 21:61003
Alfonso-García, Alba; Smith, Tim D; Datta, Rupsa et al. (2016) Label-free identification of macrophage phenotype by fluorescence lifetime imaging microscopy. J Biomed Opt 21:46005
Libby, Andrew E; Wang, Hong; Mittal, Richa et al. (2015) Lipoprotein lipase is an important modulator of lipid uptake and storage in hypothalamic neurons. Biochem Biophys Res Commun 465:287-92
Datta, Rupsa; Alfonso-García, Alba; Cinco, Rachel et al. (2015) Fluorescence lifetime imaging of endogenous biomarker of oxidative stress. Sci Rep 5:9848
Badran, Karam W; Manuel, Cyrus T; Loy, Anthony Chin et al. (2015) Long-term in vivo electromechanical reshaping for auricular reconstruction in the New Zealand white rabbit model. Laryngoscope 125:2058-66
Chlebicki, Cara A; Protsenko, Dmitry E; Wong, Brian J (2014) Preliminary investigations on therapy thresholds for laser dosimetry, cryogen spray cooling duration, and treatment cycles for laser cartilage reshaping in the New Zealand white rabbit auricle. Lasers Med Sci 29:1099-109
Rohde, S B; Kim, A D (2014) Convolution model of the diffuse reflectance for layered tissues. Opt Lett 39:154-7
Rohrbach, Daniel J; Muffoletto, Daniel; Huihui, Jonathan et al. (2014) Preoperative mapping of nonmelanoma skin cancer using spatial frequency domain and ultrasound imaging. Acad Radiol 21:263-70

Showing the most recent 10 out of 648 publications