Synchrotron radiation (SR) is an extremely bright and tunable x-ray source that enables forefront research in Structural molecular biology (SMB). A """"""""Synchrotron Structural Biology Resource"""""""" is supported at the Stanford Synchrotron Radiation Lightsource (SSRL) by the NIH and DOE to develop new technologies in macromolecular crystallography, x-ray absorption spectroscopy and small angle x-ray scattering/diffraction, to train/support users, and to disseminate these capabilities to the biomedical research community. This proposal is for the continued funding, operation and future development of this Resource. New initiatives will capitalize on the increasing SR performance of SSRL's 3'"""""""" generation storage ring SPEARS. Proposed also is the development of selected SMB applications of the world's first x-ray free-electron laser (LCLS), just beginning operation at SLAC. A principal aim is to optimize experimental facilities and instrumentation, detectors, software and compute performance on the 9-i- SMB dedicated beam lines at SSRL (with another two in construction) to take full advantage of the high brightness provided by SPEAR3 at 500 mA current. This will enable the Resource to advance the scientific forefront with new initiatives built upon state-of-the-art instrumentation and methodologies, innovative software and automated/high-throughput systems for: studying high resolution structures/function of large, complex biomolecules and molecular machines;imaging the spatial distribution and chemical nature of elements in non-crystalline biological materials;investigating fundamental questions in biophysics such as protein and RNA folding;and developing/improving methods for studying very fast time-resolved structural changes in chemical and biological systems with ultrafast or fast scattering and absorption techniques. These scientific advancements will be facilitated by parallel developments in software to provide expanded capabilities for instrument and detector control, remote data collection and real-time data analysis. Driving biomedical projects and collaborative research programs involving a large number of outside scientists will drive and support core technological developments, the pace of translational research will be accelerated through collaborations with NCRR CTSA Centers, and a highly active program in training and dissemination will bring them to a wide user community.

Public Health Relevance

Relevance is to a number of important biological problems including the structure of enzymes, metalloproteins, membrane-bound proteins and immunoglobulins;the active site structure of metalloproteins involved in metabolism and photosynthesis;and how these structures change in different states or evolve in time as reactions or events like protein folding or conformational changes occur. Such information is more broadly important to the health-related areas of drug design, cancer research, and virology.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001209-32
Application #
8066935
Study Section
Special Emphasis Panel (ZRG1-BCMB-P (40))
Program Officer
Swain, Amy L
Project Start
1997-03-01
Project End
2015-02-28
Budget Start
2011-03-01
Budget End
2012-02-29
Support Year
32
Fiscal Year
2011
Total Cost
$2,792,553
Indirect Cost
Name
Stanford University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Vickers, Chelsea; Liu, Feng; Abe, Kento et al. (2018) Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to ?-l-fucosidases from GH29. J Biol Chem 293:18296-18308
Nguyen, Phong T; Lai, Jeffrey Y; Lee, Allen T et al. (2018) Noncanonical role for the binding protein in substrate uptake by the MetNI methionine ATP Binding Cassette (ABC) transporter. Proc Natl Acad Sci U S A 115:E10596-E10604
Aleman, Fernando; Tzarum, Netanel; Kong, Leopold et al. (2018) Immunogenetic and structural analysis of a class of HCV broadly neutralizing antibodies and their precursors. Proc Natl Acad Sci U S A 115:7569-7574
Herrera, Nadia; Maksaev, Grigory; Haswell, Elizabeth S et al. (2018) Elucidating a role for the cytoplasmic domain in the Mycobacterium tuberculosis mechanosensitive channel of large conductance. Sci Rep 8:14566
Lal, Neeraj K; Nagalakshmi, Ugrappa; Hurlburt, Nicholas K et al. (2018) The Receptor-like Cytoplasmic Kinase BIK1 Localizes to the Nucleus and Regulates Defense Hormone Expression during Plant Innate Immunity. Cell Host Microbe 23:485-497.e5
Pluvinage, Benjamin; Grondin, Julie M; Amundsen, Carolyn et al. (2018) Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nat Commun 9:1043
Beyerlein, Kenneth R; Jönsson, H Olof; Alonso-Mori, Roberto et al. (2018) Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc Natl Acad Sci U S A 115:5652-5657
Yoshizawa, Takuya; Ali, Rustam; Jiou, Jenny et al. (2018) Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173:693-705.e22
Dods, Robert; Båth, Petra; Arnlund, David et al. (2017) From Macrocrystals to Microcrystals: A Strategy for Membrane Protein Serial Crystallography. Structure 25:1461-1468.e2
de Vries, Robert P; Tzarum, Netanel; Peng, Wenjie et al. (2017) A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to human-type receptors. EMBO Mol Med 9:1314-1325

Showing the most recent 10 out of 604 publications