This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. As part of an NIH funded project, we are developing the use of synthetic ?molecular wires?, substrate analogs tethered to photo-sensitizers or affinity tags, for the study of several heme enzymes including cytochrome P450s, peroxidases, and inducible nitric oxide synthase (iNOS). These wires are being designed to bind specifically to the active site of the target enzyme. Once bound, these structures may be used to photochemically trigger the injection or withdrawal of electrons from the redox active heme cofactor to allow the mechanism and turnover to be triggered in a novel way. In addition, these tethered substrate analogs may be used to select for differential binding behavior from a library of mutant proteins, allowing a new approach to the molecular evolution of novel substrate specificity. Crucial to the success of this program, and one of its key features, is the structural characterization of these artificial wires bound to their targets. In preliminary studies, we have been successful in obtaining structures of a series of synthetic wire variants bound to the active site of P450cam. This includes variations in the substrate, linker and sensitizer portion of the wire, and these structures have proven invaluable in driving our efforts to evolve P450s for novel substrate oxidation. We have also obtained a preliminary structure of a peptide based molecular wire bound to an electron transfer channel mutant of CcP, which demonstrates that we will be able to replace the electron transfer pathway in the enzyme with synthetic structures. Finally, we have recently obtained data on iNOS crystals grown in the presence of synthetic pterin based wires that show evidence of binding at the pterin site of the enzyme. We propose to extend these initial efforts by determining structures of a larger array of wires bound to WT and mutant forms of these three enzymes.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001209-32
Application #
8362151
Study Section
Special Emphasis Panel (ZRG1-BCMB-P (40))
Project Start
2011-03-01
Project End
2012-02-29
Budget Start
2011-03-01
Budget End
2012-02-29
Support Year
32
Fiscal Year
2011
Total Cost
$2,457
Indirect Cost
Name
Stanford University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Remesh, Soumya G; Andreatta, Massimo; Ying, Ge et al. (2017) Unconventional Peptide Presentation by Major Histocompatibility Complex (MHC) Class I Allele HLA-A*02:01: BREAKING CONFINEMENT. J Biol Chem 292:5262-5270
VanderLinden, Ryan T; Hemmis, Casey W; Yao, Tingting et al. (2017) Structure and energetics of pairwise interactions between proteasome subunits RPN2, RPN13, and ubiquitin clarify a substrate recruitment mechanism. J Biol Chem 292:9493-9504
Zhang, Haonan; Qiao, Anna; Yang, Dehua et al. (2017) Structure of the full-length glucagon class B G-protein-coupled receptor. Nature 546:259-264
Niedzialkowska, Ewa; Mruga?a, Beata; Rugor, Agnieszka et al. (2017) Optimization of overexpression of a chaperone protein of steroid C25 dehydrogenase for biochemical and biophysical characterization. Protein Expr Purif 134:47-62
de Vries, Robert P; Tzarum, Netanel; Peng, Wenjie et al. (2017) A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to human-type receptors. EMBO Mol Med 9:1314-1325
Tolbert, William D; Gohain, Neelakshi; Alsahafi, Nirmin et al. (2017) Targeting the Late Stage of HIV-1 Entry for Antibody-Dependent Cellular Cytotoxicity: Structural Basis for Env Epitopes in the C11 Region. Structure 25:1719-1731.e4
Yoon, Chun Hong; DeMirci, Hasan; Sierra, Raymond G et al. (2017) Se-SAD serial femtosecond crystallography datasets from selenobiotinyl-streptavidin. Sci Data 4:170055
Warelow, Thomas P; Pushie, M Jake; Cotelesage, Julien J H et al. (2017) The active site structure and catalytic mechanism of arsenite oxidase. Sci Rep 7:1757
Tzarum, Netanel; de Vries, Robert P; Peng, Wenjie et al. (2017) The 150-Loop Restricts the Host Specificity of Human H10N8 Influenza Virus. Cell Rep 19:235-245
Hettle, Andrew; Fillo, Alexander; Abe, Kento et al. (2017) Properties of a family 56 carbohydrate-binding module and its role in the recognition and hydrolysis of ?-1,3-glucan. J Biol Chem 292:16955-16968

Showing the most recent 10 out of 581 publications