This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Structure determination of the Ferm domain of Pyk2 in complex with the C-terminal domain of Nir2 We have obtained crystals of Ferm domain of Pyk2 in complex with the C-terminal domain of Nir2 that can elucidate how the C-terminal domain of Nir2 binds to the Ferm domain of Pyk2 and regulates Pyk2 activation and signaling. Intense crystal optimization of the complex as well as cryoprotectant search has been pursued yielding the datasets of resolution limit of 3.5 ? at X29 at Brookhaven. The limit of diffraction ranges of the crystals turned out to be caused by the cryoprotectants since the room temperature diffraction in the capillary gave higher resolution. However, the exposure of crystals to the beam at room temperature rapidly damaged crystals resulting that the data collection at room temperature is unlikely. Due to the nature of the complex crystals, we need newly developed technique, the high-pressure cooling. In collaboration with Dr. Sol M. Gruner and Dr. Chae Un Kim at Cornell, we are attempting to improve the resolution of our crystals using their newly developed high-pressure cryocooling approach. We are therefore requesting one (or two) day beam time at CHESS to test the effects of high-pressure cryocooling on the diffraction properties of these crystals, and if successful, collecting full native datasets.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001646-29
Application #
8363541
Study Section
Special Emphasis Panel (ZRG1-BCMB-E (40))
Project Start
2011-07-01
Project End
2012-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
29
Fiscal Year
2011
Total Cost
$6,882
Indirect Cost
Name
Cornell University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Bauman, Joseph D; Harrison, Jerry Joe E K; Arnold, Eddy (2016) Rapid experimental SAD phasing and hot-spot identification with halogenated fragments. IUCrJ 3:51-60
Xu, Caishuang; Kozlov, Guennadi; Wong, Kathy et al. (2016) Crystal Structure of the Salmonella Typhimurium Effector GtgE. PLoS One 11:e0166643
Cogliati, Massimo; Zani, Alberto; Rickerts, Volker et al. (2016) Multilocus sequence typing analysis reveals that Cryptococcus neoformans var. neoformans is a recombinant population. Fungal Genet Biol 87:22-9
Oot, Rebecca A; Kane, Patricia M; Berry, Edward A et al. (2016) Crystal structure of yeast V1-ATPase in the autoinhibited state. EMBO J 35:1694-706
Lucido, Michael J; Orlando, Benjamin J; Vecchio, Alex J et al. (2016) Crystal Structure of Aspirin-Acetylated Human Cyclooxygenase-2: Insight into the Formation of Products with Reversed Stereochemistry. Biochemistry 55:1226-38
Gupta, Kushol; Martin, Renee; Sharp, Robert et al. (2015) Oligomeric Properties of Survival Motor Neuron·Gemin2 Complexes. J Biol Chem 290:20185-99
Moravcevic, Katarina; Alvarado, Diego; Schmitz, Karl R et al. (2015) Comparison of Saccharomyces cerevisiae F-BAR domain structures reveals a conserved inositol phosphate binding site. Structure 23:352-63
Orlando, Benjamin J; Lucido, Michael J; Malkowski, Michael G (2015) The structure of ibuprofen bound to cyclooxygenase-2. J Struct Biol 189:62-6
Wong, Kathy; Kozlov, Guennadi; Zhang, Yinglu et al. (2015) Structure of the Legionella Effector, lpg1496, Suggests a Role in Nucleotide Metabolism. J Biol Chem 290:24727-37
Muñoz-Escobar, Juliana; Matta-Camacho, Edna; Kozlov, Guennadi et al. (2015) The MLLE domain of the ubiquitin ligase UBR5 binds to its catalytic domain to regulate substrate binding. J Biol Chem 290:22841-50

Showing the most recent 10 out of 368 publications