This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Chaperonins function by interacting with nascent or unfolded polypeptides to prevent misfolding, which otherwise leads to aggregation. Bacterial chaperonins GroEL/GroES are homologues of mitochondrial Hsp60/Hsp10, respectively. GroEL is a 14-meric double-ring complex of 800 kDa in size, whereas its co-chaperonin GroES is a 70-kDa 7-meric single-ring complex. The mechanism by which molecular chaperones promote proper folding is of intense interest. However, most studies have used small proteins or synthetic peptides as model substrates. Limited information is available as to how these chaperones mediate folding and/or assembly of hetero-oligomeric proteins or macromolecular structures. To understand the mechanism underlying chaperonin-assisted protein folding and assembly, we plan to dp the following cryo-EM studies.
Specific Aims :1. To continue using the GroEL double-ring complex as a model for cryo-EM reconstruction with the goal of attaining 4- resolution. 2. To determine three-dimensional structures of single ring mutant of GroEL bound with substrate.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR002250-22
Application #
7598604
Study Section
Special Emphasis Panel (ZRG1-BPC-K (40))
Project Start
2006-12-01
Project End
2007-11-30
Budget Start
2006-12-01
Budget End
2007-11-30
Support Year
22
Fiscal Year
2007
Total Cost
$16,289
Indirect Cost
Name
Baylor College of Medicine
Department
Physiology
Type
Schools of Medicine
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Bucero, Marta Abril; Bajaj, Chandrajit; Mourrain, Bernard (2016) On the construction of general cubature formula by flat extensions. Linear Algebra Appl 502:104-125
Ebeida, Mohamed S; Rushdi, Ahmad A; Awad, Muhammad A et al. (2016) Disk Density Tuning of a Maximal Random Packing. Comput Graph Forum 35:259-269
Wensel, Theodore G; Zhang, Zhixian; Anastassov, Ivan A et al. (2016) Structural and molecular bases of rod photoreceptor morphogenesis and disease. Prog Retin Eye Res 55:32-51
Baker, Mariah R; Fan, Guizhen; Serysheva, Irina I (2015) Single-particle cryo-EM of the ryanodine receptor channel in an aqueous environment. Eur J Transl Myol 25:35-48
Bettadapura, Radhakrishna; Rasheed, Muhibur; Vollrath, Antje et al. (2015) PF2fit: Polar Fast Fourier Matched Alignment of Atomistic Structures with 3D Electron Microscopy Maps. PLoS Comput Biol 11:e1004289
Baranovskiy, Andrey G; Zhang, Yinbo; Suwa, Yoshiaki et al. (2015) Crystal structure of the human primase. J Biol Chem 290:5635-46
Zhang, Zhixian; He, Feng; Constantine, Ryan et al. (2015) Domain organization and conformational plasticity of the G protein effector, PDE6. J Biol Chem 290:12833-43
Baker, Mariah R; Fan, Guizhen; Serysheva, Irina I (2015) Single-Particle Cryo-EM of the Ryanodine Receptor Channel in an Aqueous Environment. Eur J Transl Myol 25:4803
Rushdi, Ahmad A; Mitchell, Scott A; Bajaj, Chandrajit L et al. (2015) Robust All-quad Meshing of Domains with Connected Regions. Procedia Eng 124:96-108
Edwards, John; Daniel, Eric; Pascucci, Valerio et al. (2015) Approximating the Generalized Voronoi Diagram of Closely Spaced Objects. Comput Graph Forum 34:299-309

Showing the most recent 10 out of 213 publications