This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. During large dsDNA virus assembly, viral DNA is transferred into preformed protein shells. The DNA packaging is driven into the shell by a translocation motor system powered by ATP hydrolysis. A crucial part of the packaging machine is a portal protein. To date there is limited detail structural information of portals as only two portal phages SPP1 and phi*29 phage portals have been determined. We have determined the first crystal structure of the double- stranded DNA bacteriophage HK97-like connector to 2.9 A resolution. This 400 kDa motor protein connects the head of the phage to its tail and translocates the DNA into the prohead during packaging. Each monomer has an elongated shape and is composed of a central, alpha-helical domain that includes a distal alpha/beta domain and a proximal six-stranded SH3-like domain. The protomers assemble into a 12-mer, funnel-like structure with a 40 A wide central channel. The surface of the channel is mainly electronegative, but it includes three positively charged rings, one at the opening of the funnel, second at the middle of a particle and the third at the exit of the portal. We are looking to combine the crystal structure with macromolecular imaging in order to extensively characterize this portal structure.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR002250-26
Application #
8361120
Study Section
Special Emphasis Panel (ZRG1-BCMB-T (41))
Project Start
2011-01-01
Project End
2011-12-31
Budget Start
2011-01-01
Budget End
2011-12-31
Support Year
26
Fiscal Year
2011
Total Cost
$12,256
Indirect Cost
Name
Baylor College of Medicine
Department
Physiology
Type
Schools of Medicine
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Bucero, Marta Abril; Bajaj, Chandrajit; Mourrain, Bernard (2016) On the construction of general cubature formula by flat extensions. Linear Algebra Appl 502:104-125
Ebeida, Mohamed S; Rushdi, Ahmad A; Awad, Muhammad A et al. (2016) Disk Density Tuning of a Maximal Random Packing. Comput Graph Forum 35:259-269
Wensel, Theodore G; Zhang, Zhixian; Anastassov, Ivan A et al. (2016) Structural and molecular bases of rod photoreceptor morphogenesis and disease. Prog Retin Eye Res 55:32-51
Baker, Mariah R; Fan, Guizhen; Serysheva, Irina I (2015) Single-Particle Cryo-EM of the Ryanodine Receptor Channel in an Aqueous Environment. Eur J Transl Myol 25:4803
Rushdi, Ahmad A; Mitchell, Scott A; Bajaj, Chandrajit L et al. (2015) Robust All-quad Meshing of Domains with Connected Regions. Procedia Eng 124:96-108
Edwards, John; Daniel, Eric; Pascucci, Valerio et al. (2015) Approximating the Generalized Voronoi Diagram of Closely Spaced Objects. Comput Graph Forum 34:299-309
Wensel, Theodore G; Gilliam, Jared C (2015) Three-dimensional architecture of murine rod cilium revealed by cryo-EM. Methods Mol Biol 1271:267-92
Jeter, Cameron B; Patel, Saumil S; Morris, Jeffrey S et al. (2015) Oculomotor executive function abnormalities with increased tic severity in Tourette syndrome. J Child Psychol Psychiatry 56:193-202
Zhang, Qin; Cha, Deukhyun; Bajaj, Chandrajit (2015) Quality Partitioned Meshing of Multi-Material Objects. Procedia Eng 124:187-199
Baker, Mariah R; Fan, Guizhen; Serysheva, Irina I (2015) Single-particle cryo-EM of the ryanodine receptor channel in an aqueous environment. Eur J Transl Myol 25:35-48

Showing the most recent 10 out of 213 publications