This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Nuclear Magnetic Resonance (NMR) has emerged as an important analytical tool in the field of metabolomics. Virtually all of the current methods for statistical analysis of complex NMR spectra rely on a smoothing procedure (binning) to condense spectral complexity and correct for variability in peak location. In this paper, we show that the traditional binning methods are a major source of experimental variability. In response to this, we introduce Automated Filtering of NMR Spectra (AFNS). AFNS is a processing program that uses a rolling binning algorithm, multiple binwidths, and t-statistic based filtering as a means of identifying significant features in complex spectra. As an initial application of this program, we analyzed proton spectra of liver extracts from two strains of mice: the C57BL6/J (B6) and BTBR, in both genetically obese (ob/ob) and lean (+/+) conditions. Although lean mice from both strains are healthy, the BTBR-ob/ob mice develop severe diabetes. In contrast, B6-ob/ob mice remain resistant to diabetes despite obesity. When traditional binning methods were used, proton spectra from B6(+/+ and ob/ob) and BTBR(+/+ and ob/ob) could not be linearly separated by Principal Components Analysis (PCA) and the distribution of individuals was strongly influenced by the selection of binwidth. In contrast, spectra processed with AFNS revealed that B6(+/+ and ob/ob) and BTBR(+/+ and ob/ob) mice have distinct molecular profiles that can be linearly separated from one another along a single principal component. We attribute the success of AFNS to reduced binwidth related variability and a more robust selection of spectral features.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR002301-22
Application #
7598751
Study Section
Special Emphasis Panel (ZRG1-BCMB-E (40))
Project Start
2007-03-01
Project End
2008-02-29
Budget Start
2007-03-01
Budget End
2008-02-29
Support Year
22
Fiscal Year
2007
Total Cost
$6,574
Indirect Cost
Name
University of Wisconsin Madison
Department
Biochemistry
Type
Schools of Earth Sciences/Natur
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Travers, Timothy; López, Cesar A; Van, Que N et al. (2018) Molecular recognition of RAS/RAF complex at the membrane: Role of RAF cysteine-rich domain. Sci Rep 8:8461
Thomas, Nathan E; Wu, Chao; Morrison, Emma A et al. (2018) The C terminus of the bacterial multidrug transporter EmrE couples drug binding to proton release. J Biol Chem 293:19137-19147
Assadi-Porter, Fariba M; Radek, James; Rao, Hongyu et al. (2018) Multimodal Ligand Binding Studies of Human and Mouse G-Coupled Taste Receptors to Correlate Their Species-Specific Sweetness Tasting Properties. Molecules 23:
Wijayatunga, Nadeeja N; Sams, Valerie G; Dawson, John A et al. (2018) Roux-en-Y gastric bypass surgery alters serum metabolites and fatty acids in patients with morbid obesity. Diabetes Metab Res Rev 34:e3045
Assadi-Porter, Fariba M; Reiland, Hannah; Sabatini, Martina et al. (2018) Metabolic Reprogramming by 3-Iodothyronamine (T1AM): A New Perspective to Reverse Obesity through Co-Regulation of Sirtuin 4 and 6 Expression. Int J Mol Sci 19:
Dominguez, Eddie; Zarnowski, Robert; Sanchez, Hiram et al. (2018) Conservation and Divergence in the Candida Species Biofilm Matrix Mannan-Glucan Complex Structure, Function, and Genetic Control. MBio 9:
Franco, Aldo; Dovell, Sanaz; Möller, Carolina et al. (2018) Structural plasticity of mini-M conotoxins - expression of all mini-M subtypes by Conus regius. FEBS J 285:887-902
Wales, Jessica A; Chen, Cheng-Yu; Breci, Linda et al. (2018) Discovery of stimulator binding to a conserved pocket in the heme domain of soluble guanylyl cyclase. J Biol Chem 293:1850-1864
Selen Alpergin, Ebru S; Bolandnazar, Zeinab; Sabatini, Martina et al. (2017) Metabolic profiling reveals reprogramming of lipid metabolic pathways in treatment of polycystic ovary syndrome with 3-iodothyronamine. Physiol Rep 5:
Mong, Surin K; Cochran, Frank V; Yu, Hongtao et al. (2017) Heterochiral Knottin Protein: Folding and Solution Structure. Biochemistry 56:5720-5725

Showing the most recent 10 out of 613 publications