We have formulated the theory of inertially confined mechanism for ablation of biological tissues. The motivation behind this theory is the observation that the energy density (E) absorbed in the tissue subsurface at ablation threshold (for short pulses) is typically ten times smaller than that required for vaporization, and of the order E ~ 200-300 J/cm3. Thus vaporization alone is inadequate to explain pulsed ablation, and other physical mechanisms must be responsible for tissue removal on this short time scale. By studying the steam tables (water is used as a thermodynamic model for soft tissue), one finds that an increase in energy density of 300 J/cm3, under conditions of constant volume, is sufficient to generate a pressure of 900 bars in the tissue. The condition of constant volume is assumed because, for short pulses (less than several hundred nanoseconds), the tissue is inertially confined (it lacks sufficient time to expand). Ablation occurs when the lase r-induced pressure exceeds a threshold value (which is dependent on the structural properties of the tissue) and proceeds through a disassembly of the tissue at the microcracks and subsequent acceleration away from the crater due to the pressure gradient.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR002594-14
Application #
6121224
Study Section
Project Start
1999-06-01
Project End
2000-05-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
14
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Type
DUNS #
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Shih, Wei-Chuan; Bechtel, Kate L; Rebec, Mihailo V (2015) Noninvasive glucose sensing by transcutaneous Raman spectroscopy. J Biomed Opt 20:051036
Dudzik, Jonathan; Chang, Wen-Chi; Kannan, A M et al. (2013) Cross-linked glucose oxidase clusters for biofuel cell anode catalysts. Biofabrication 5:035009
Sathyavathi, R; Dingari, Narahara Chari; Barman, Ishan et al. (2013) Raman spectroscopy provides a powerful, rapid diagnostic tool for the detection of tuberculous meningitis in ex vivo cerebrospinal fluid samples. J Biophotonics 6:567-72
Dingari, Narahara Chari; Barman, Ishan; Saha, Anushree et al. (2013) Development and comparative assessment of Raman spectroscopic classification algorithms for lesion discrimination in stereotactic breast biopsies with microcalcifications. J Biophotonics 6:371-81
Cooper, Kimberly L; Oh, Seungeun; Sung, Yongjin et al. (2013) Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions. Nature 495:375-8
Sung, Yongjin; Tzur, Amit; Oh, Seungeun et al. (2013) Size homeostasis in adherent cells studied by synthetic phase microscopy. Proc Natl Acad Sci U S A 110:16687-92
Lau, Condon; Mirkovic, Jelena; Yu, Chung-Chieh et al. (2013) Early detection of high-grade squamous intraepithelial lesions in the cervix with quantitative spectroscopic imaging. J Biomed Opt 18:76013
Soares, Jaqueline S; Barman, Ishan; Dingari, Narahara Chari et al. (2013) Diagnostic power of diffuse reflectance spectroscopy for targeted detection of breast lesions with microcalcifications. Proc Natl Acad Sci U S A 110:471-6
Kim, Youngchan; Higgins, John M; Dasari, Ramachandra R et al. (2012) Anisotropic light scattering of individual sickle red blood cells. J Biomed Opt 17:040501
Saha, Anushree; Barman, Ishan; Dingari, Narahara Chari et al. (2012) Precision of Raman spectroscopy measurements in detection of microcalcifications in breast needle biopsies. Anal Chem 84:6715-22

Showing the most recent 10 out of 178 publications