This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. We have investigated the usage of Raman spectroscopy to diagnose atherosclerosis and breast cancer. Over the years, we have successfully conducted several in vivo and ex vivo clinical studies. We were able to minimize our microscopy-based laboratory system into a clinical Raman system utilizing a Raman fiber optical probe. Currently, we are developing a mini-Raman clinical instrument that will be available for users outside of the LBRC. The purposes of this project are to foster clinical translational research in optical spectroscopy;and to familiarize young/new investigators with the methods of diagnostic spectroscopy. The LBRC will provide Raman spectroscopy instrument capable of collecting Raman spectra from biological tissues over the fingerprint range (600-1800cm-1).

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
3P41RR002594-25S1
Application #
8364149
Study Section
Special Emphasis Panel (ZRG1-SBIB-L (40))
Project Start
2011-06-01
Project End
2012-05-31
Budget Start
2011-06-01
Budget End
2012-05-31
Support Year
25
Fiscal Year
2011
Total Cost
$29,734
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Internal Medicine/Medicine
Type
Schools of Arts and Sciences
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Shih, Wei-Chuan; Bechtel, Kate L; Rebec, Mihailo V (2015) Noninvasive glucose sensing by transcutaneous Raman spectroscopy. J Biomed Opt 20:051036
Dudzik, Jonathan; Chang, Wen-Chi; Kannan, A M et al. (2013) Cross-linked glucose oxidase clusters for biofuel cell anode catalysts. Biofabrication 5:035009
Sathyavathi, R; Dingari, Narahara Chari; Barman, Ishan et al. (2013) Raman spectroscopy provides a powerful, rapid diagnostic tool for the detection of tuberculous meningitis in ex vivo cerebrospinal fluid samples. J Biophotonics 6:567-72
Cooper, Kimberly L; Oh, Seungeun; Sung, Yongjin et al. (2013) Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions. Nature 495:375-8
Dingari, Narahara Chari; Barman, Ishan; Saha, Anushree et al. (2013) Development and comparative assessment of Raman spectroscopic classification algorithms for lesion discrimination in stereotactic breast biopsies with microcalcifications. J Biophotonics 6:371-81
Lau, Condon; Mirkovic, Jelena; Yu, Chung-Chieh et al. (2013) Early detection of high-grade squamous intraepithelial lesions in the cervix with quantitative spectroscopic imaging. J Biomed Opt 18:76013
Sung, Yongjin; Tzur, Amit; Oh, Seungeun et al. (2013) Size homeostasis in adherent cells studied by synthetic phase microscopy. Proc Natl Acad Sci U S A 110:16687-92
Soares, Jaqueline S; Barman, Ishan; Dingari, Narahara Chari et al. (2013) Diagnostic power of diffuse reflectance spectroscopy for targeted detection of breast lesions with microcalcifications. Proc Natl Acad Sci U S A 110:471-6
Angheloiu, George O; van de Poll, Sweder W E; Georgakoudi, Irene et al. (2012) Intrinsic versus laser-induced fluorescence spectroscopy for coronary atherosclerosis: a generational comparison model for testing diagnostic accuracy. Appl Spectrosc 66:1403-10
Kalashnikov, Maxim; Choi, Wonshik; Hunter, Martin et al. (2012) Assessing the contribution of cell body and intracellular organelles to the backward light scattering. Opt Express 20:816-26

Showing the most recent 10 out of 178 publications