This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The heart is a complex nonlinear system, whose function involves the interaction between mechanical contractions and waves of electrochemical excitation. Heartbeats are the result of the nonlinear behaviors of these electrical and mechanical functions. During normal heartbeats, the waves of excitation generate a coordinated contraction of the muscle, known as normal sinus rhythm. In some situations, the orderly waves develop into a complex dynamical state known as fibrillation, which leads to disorganized muscle contractions. Fibrillation in the atria, although not lethal, leaves a patient feeling tired and may increase the risk of stroke. On the other hand, ventricular fibrillation is more dreadful. During ventricular fibrillation, disorganized contractions of the ventricles fail to eject blood effectively, leading to death within a few minutes if left untreated. Ventricular fibrillation is the main cause of sudden cardiac death, which claims 300,000-400,000 lives a year in the United States. A complete understanding of heart rhythm disorders requires a system-levels investigation on the interaction between electrical, chemical, and mechanical activities on biological scales ranging from ion channels to single cells to multi-cellular tissue and organ. While it is difficult if not impossible to monitor and control all these factors in the lab, mathematical modeling provides a useful tool for this purpose. A systems-level understanding of cardiac nonlinear dynamics will not only improve the ability to predict and prevent lethal heart rhythms but also drives the advance of techniques of mathematical modeling in areas such as model reduction, emergent properties, and multiscale modeling.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
3P41RR006009-20S1
Application #
8364176
Study Section
Special Emphasis Panel (ZRG1-BCMB-Q (40))
Project Start
2011-09-15
Project End
2013-07-31
Budget Start
2011-09-15
Budget End
2013-07-31
Support Year
20
Fiscal Year
2011
Total Cost
$1,583
Indirect Cost
Name
Carnegie-Mellon University
Department
Biostatistics & Other Math Sci
Type
Schools of Arts and Sciences
DUNS #
052184116
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Simakov, Nikolay A; Kurnikova, Maria G (2018) Membrane Position Dependency of the pKa and Conductivity of the Protein Ion Channel. J Membr Biol 251:393-404
Yonkunas, Michael; Buddhadev, Maiti; Flores Canales, Jose C et al. (2017) Configurational Preference of the Glutamate Receptor Ligand Binding Domain Dimers. Biophys J 112:2291-2300
Hwang, Wonmuk; Lang, Matthew J; Karplus, Martin (2017) Kinesin motility is driven by subdomain dynamics. Elife 6:
Earley, Lauriel F; Powers, John M; Adachi, Kei et al. (2017) Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11. J Virol 91:
Subramanian, Sandeep; Chaparala, Srilakshmi; Avali, Viji et al. (2016) A pilot study on the prevalence of DNA palindromes in breast cancer genomes. BMC Med Genomics 9:73
Ramakrishnan, N; Tourdot, Richard W; Radhakrishnan, Ravi (2016) Thermodynamic free energy methods to investigate shape transitions in bilayer membranes. Int J Adv Eng Sci Appl Math 8:88-100
Zhang, Yimeng; Li, Xiong; Samonds, Jason M et al. (2016) Relating functional connectivity in V1 neural circuits and 3D natural scenes using Boltzmann machines. Vision Res 120:121-31
Lee, Wei-Chung Allen; Bonin, Vincent; Reed, Michael et al. (2016) Anatomy and function of an excitatory network in the visual cortex. Nature 532:370-4
Murty, Vishnu P; Calabro, Finnegan; Luna, Beatriz (2016) The role of experience in adolescent cognitive development: Integration of executive, memory, and mesolimbic systems. Neurosci Biobehav Rev 70:46-58
Ramakrishnan, N; Radhakrishnan, Ravi (2015) Phenomenology based multiscale models as tools to understand cell membrane and organelle morphologies. Adv Planar Lipid Bilayers Liposomes 22:129-175

Showing the most recent 10 out of 292 publications