This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. A critical step in protein biosynthesis involves either translocation across a cellular membrane or integration into a cellular membrane. Both processes proceed via the Sec translocon - a ubiquitous and highly conserved transmembrane channel. Recent structural studies offer high-resolution snapshots of the translocon, and a wealth of biochemical and genetic data reveal important interactions within the translocon;but many aspects of its mechanism and regulation remain unclear. We propose to address two central questions about the mechanism of Sec-facilitated protein translocation and membrane integration that are nearly impossible to resolve without the long-timescale simulations made possible by Anton. Specifically, these questions are: (1) What is the conformational response of the Sec translocon to the slow insertion of hydrophobic and hydrophilic peptide substrates? (2) Does the binding of molecular motors to the translocon induce conformational changes that are essential for protein translocation and membrane integration? We propose long-timescale simulation studies that will directly address these two fundamental questions.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
3P41RR006009-20S1
Application #
8364338
Study Section
Special Emphasis Panel (ZRG1-BCMB-Q (40))
Project Start
2011-09-15
Project End
2013-07-31
Budget Start
2011-09-15
Budget End
2013-07-31
Support Year
20
Fiscal Year
2011
Total Cost
$1,094
Indirect Cost
Name
Carnegie-Mellon University
Department
Biostatistics & Other Math Sci
Type
Schools of Arts and Sciences
DUNS #
052184116
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Yonkunas, Michael; Buddhadev, Maiti; Flores Canales, Jose C et al. (2017) Configurational Preference of the Glutamate Receptor Ligand Binding Domain Dimers. Biophys J 112:2291-2300
Earley, Lauriel F; Powers, John M; Adachi, Kei et al. (2017) Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11. J Virol 91:
Subramanian, Sandeep; Chaparala, Srilakshmi; Avali, Viji et al. (2016) A pilot study on the prevalence of DNA palindromes in breast cancer genomes. BMC Med Genomics 9:73
Ramakrishnan, N; Tourdot, Richard W; Radhakrishnan, Ravi (2016) Thermodynamic free energy methods to investigate shape transitions in bilayer membranes. Int J Adv Eng Sci Appl Math 8:88-100
Zhang, Yimeng; Li, Xiong; Samonds, Jason M et al. (2016) Relating functional connectivity in V1 neural circuits and 3D natural scenes using Boltzmann machines. Vision Res 120:121-31
Lee, Wei-Chung Allen; Bonin, Vincent; Reed, Michael et al. (2016) Anatomy and function of an excitatory network in the visual cortex. Nature 532:370-4
Murty, Vishnu P; Calabro, Finnegan; Luna, Beatriz (2016) The role of experience in adolescent cognitive development: Integration of executive, memory, and mesolimbic systems. Neurosci Biobehav Rev 70:46-58
Lee, Tai Sing (2015) The visual system's internal model of the world. Proc IEEE Inst Electr Electron Eng 103:1359-1378
Kuhlman, Chris J; Anil Kumar, V S; Marathe, Madhav V et al. (2015) Inhibiting diffusion of complex contagions in social networks: theoretical and experimental results. Data Min Knowl Discov 29:423-465
Jurkowitz, Marianne S; Patel, Aalapi; Wu, Lai-Chu et al. (2015) The YhhN protein of Legionella pneumophila is a Lysoplasmalogenase. Biochim Biophys Acta 1848:742-51

Showing the most recent 10 out of 289 publications