This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.We used ultra-high field (7 T) fMRI and parallel imaging to scan the superior parietal lobule (SPL) of human subjects as they mentally traversed a maze path in one of four directions (up, down, left, right). A counterbalanced design for maze presentation and a quasi-isotropic voxel (1.46 x 1.46 x 2 mm thick) collection were implemented. Fifty-one percent of single voxels in the SPL were tuned to the direction of the maze path. Tuned voxels were distributed throughout the SPL, bilaterally. A nearest neighbor analysis revealed a 'honeycomb' arrangement such that voxels tuned to a particular direction tended to occur in clusters. Three-dimensional (3D) directional clusters were identified in SPL as oriented centroids traversing the cortical depth. There were 13 same-direction clusters per hemisphere containing 22 voxels per cluster, on the average; the mean nearest-neighbor, same-direction intercluster distance was 9.4 mm. These results provide a much finer detail of the directional tuning in SPL, as compared to those obtained previously at 4 T (Gourtzelidis et al. Exp Brain Res 165:273-282, 2005). The more accurate estimates of quantitative clustering parameters in 3D brain space in this study were made possible by the higher signal-to-noise and contrast-to-noise ratios afforded by the higher magnetic field of 7 T as well as the quasi-isotropic design of voxel data collection.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR008079-16
Application #
7721381
Study Section
Special Emphasis Panel (ZRG1-SBIB-S (40))
Project Start
2008-06-01
Project End
2009-05-31
Budget Start
2008-06-01
Budget End
2009-05-31
Support Year
16
Fiscal Year
2008
Total Cost
$17,835
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Herzberg, Max P; Hodel, Amanda S; Cowell, Raquel A et al. (2018) Risk taking, decision-making, and brain volume in youth adopted internationally from institutional care. Neuropsychologia 119:262-270
U?urbil, Kamil (2018) Imaging at ultrahigh magnetic fields: History, challenges, and solutions. Neuroimage 168:7-32
Foell, Jens; Palumbo, Isabella M; Yancey, James R et al. (2018) Biobehavioral threat sensitivity and amygdala volume: A twin neuroimaging study. Neuroimage 186:14-21
Magnitsky, Sergey; Pickup, Stephan; Garwood, Michael et al. (2018) Imaging of a high concentration of iron labeled cells with positive contrast in a rat knee. Magn Reson Med :
Lee, Byeong-Yeul; Zhu, Xiao-Hong; Woo, Myung Kyun et al. (2018) Interleaved 31 P MRS imaging of human frontal and occipital lobes using dual RF coils in combination with single-channel transmitter-receiver and dynamic B0 shimming. NMR Biomed 31:
Wilson, Sylia; Malone, Stephen M; Hunt, Ruskin H et al. (2018) Problematic alcohol use and hippocampal volume in a female sample: disentangling cause from consequence using a co-twin control study design. Psychol Med 48:1673-1684
Bolan, Patrick J; Kim, Eunhee; Herman, Benjamin A et al. (2017) MR spectroscopy of breast cancer for assessing early treatment response: Results from the ACRIN 6657 MRS trial. J Magn Reson Imaging 46:290-302
Nelson, Brent G; Bassett, Danielle S; Camchong, Jazmin et al. (2017) Comparison of large-scale human brain functional and anatomical networks in schizophrenia. Neuroimage Clin 15:439-448
Wiesner, Hannes M; Balla, Dávid Z; Shajan, G et al. (2016) (17)O relaxation times in the rat brain at 16.4 tesla. Magn Reson Med 75:1886-93
Foell, Jens; Brislin, Sarah J; Strickland, Casey M et al. (2016) Externalizing proneness and brain response during pre-cuing and viewing of emotional pictures. Soc Cogn Affect Neurosci 11:1102-10

Showing the most recent 10 out of 493 publications