This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Stress has been shown to alter the development of neural systems involved in learning (particularly contextual, cued, and extinction learning) and cognitive control. Emerging evidence in the human and mouse suggests that stressful experiences result in region-specific alterations in BDNF levels. The overarching goal of this project is to test the hypothesis that the Val66Met polymorphism in the BDNF gene will moderate the effects of early life stress (in the form of institutional/orphanage rearing) on the structure and function of the hippocampus, amygdala and ventromedial prefrontal cortex (including orbital prefrontal cortex). Participants will be 12-14 year old children adopted internationally between the ages of 4 months and 5 years after having lived for 75% or more of their pre-adoption lives in institutions (hospitals, orphanage). We will test the hypothesis that the BDNF Val66Met polymorphism will moderate the impact of early life stress (dose/duration of institutional care) on structure and function of these regions. We will also examine whether these effects are diminished with time in the adoptive home. This project is part of an NIMH Center grant that includes additional projects addressing the impact of BDNF genotype on learning and cognitive control in typical development from 8-18 years of age (Sackler Institute, New York) and a knock-in gene model of the Val66Met polymorphism in the mouse, including early postnatal stress and behavioral measures of mouse learning.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR008079-19
Application #
8362824
Study Section
Special Emphasis Panel (ZRG1-SBIB-S (40))
Project Start
2011-06-01
Project End
2012-05-31
Budget Start
2011-06-01
Budget End
2012-05-31
Support Year
19
Fiscal Year
2011
Total Cost
$3,782
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Bolan, Patrick J; Kim, Eunhee; Herman, Benjamin A et al. (2017) MR spectroscopy of breast cancer for assessing early treatment response: Results from the ACRIN 6657 MRS trial. J Magn Reson Imaging 46:290-302
U?urbil, Kamil (2017) Imaging at ultrahigh magnetic fields: History, challenges, and solutions. Neuroimage :
Wilson, Sylia; Malone, Stephen M; Hunt, Ruskin H et al. (2017) Problematic alcohol use and hippocampal volume in a female sample: disentangling cause from consequence using a co-twin control study design. Psychol Med :1-12
Lyzinski, Vince; Fishkind, Donniell E; Fiori, Marcelo et al. (2016) Graph Matching: Relax at Your Own Risk. IEEE Trans Pattern Anal Mach Intell 38:60-73
Musgrove, Donald R; Hughes, John; Eberly, Lynn E (2016) Fast, fully Bayesian spatiotemporal inference for fMRI data. Biostatistics 17:291-303
Andronesi, Ovidiu C; Loebel, Franziska; Bogner, Wolfgang et al. (2016) Treatment Response Assessment in IDH-Mutant Glioma Patients by Noninvasive 3D Functional Spectroscopic Mapping of 2-Hydroxyglutarate. Clin Cancer Res 22:1632-41
Thatcher, R W; Palmero-Soler, E; North, D M et al. (2016) Intelligence and eeg measures of information flow: efficiency and homeostatic neuroplasticity. Sci Rep 6:38890
Uroševi?, Snežana; Luciana, Monica; Jensen, Jonathan B et al. (2016) Age associations with neural processing of reward anticipation in adolescents with bipolar disorders. Neuroimage Clin 11:476-85
Kennedy, James T; Collins, Paul F; Luciana, Monica (2016) Higher Adolescent Body Mass Index Is Associated with Lower Regional Gray and White Matter Volumes and Lower Levels of Positive Emotionality. Front Neurosci 10:413
Wiesner, Hannes M; Balla, Dávid Z; Shajan, G et al. (2016) (17)O relaxation times in the rat brain at 16.4 tesla. Magn Reson Med 75:1886-93

Showing the most recent 10 out of 485 publications