This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Introduction: Imaging with a reduced field of view (rFOV) reduces distortion in EPI by acquiring fewer phase-encode lines. However, aliasing occurs when regions with signal are outside the phase field of view. ZOOM-EPI [1,2] is a method used to address this problem in which the refocusing slices are tilted relative to the first excitation (the 90 degree pulse). Here we use ZOOM-EPI with the refocusing pulses titled by 90 degrees to assure a sharp profile of the selected band. The approach is compared to a full FOV method in diffusion-tensor imaging DTI of the thoracic spine in one healthy volunteer. Methods: MRI: Single-shot twice-refocused DTI of the thoracic spine was performed on a healthy volunteer using a 1.5T MRI scanner with a 4-channel spine coil. Three un-weighted (b=0 s/mm2) images and 60 diffusion-weighted directions (b = 500 s/mm2) were collected on 7 slices with a 4 mm slice thickness. Both the rFOV method and a conventional full FOV method were performed in a scan time of 3:12 min. To read about other projects ongoing at the Lucas Center, please visit (Lucas Annual Report and ISMRM 2011 Abstracts)

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-SBIB-U (40))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
Schools of Medicine
United States
Zip Code
Taviani, Valentina; Alley, Marcus T; Banerjee, Suchandrima et al. (2017) High-resolution diffusion-weighted imaging of the breast with multiband 2D radiofrequency pulses and a generalized parallel imaging reconstruction. Magn Reson Med 77:209-220
Guo, Jia; Holdsworth, Samantha J; Fan, Audrey P et al. (2017) Comparing accuracy and reproducibility of sequential and Hadamard-encoded multidelay pseudocontinuous arterial spin labeling for measuring cerebral blood flow and arterial transit time in healthy subjects: A simulation and in vivo study. J Magn Reson Imaging :
Uecker, Martin; Lustig, Michael (2017) Estimating absolute-phase maps using ESPIRiT and virtual conjugate coils. Magn Reson Med 77:1201-1207
Lai, Lillian M; Cheng, Joseph Y; Alley, Marcus T et al. (2017) Feasibility of ferumoxytol-enhanced neonatal and young infant cardiac MRI without general anesthesia. J Magn Reson Imaging 45:1407-1418
Kogan, Feliks; Hargreaves, Brian A; Gold, Garry E (2017) Volumetric multislice gagCEST imaging of articular cartilage: Optimization and comparison with T1rho. Magn Reson Med 77:1134-1141
Aksoy, Murat; Maclaren, Julian; Bammer, Roland (2017) Prospective motion correction for 3D pseudo-continuous arterial spin labeling using an external optical tracking system. Magn Reson Imaging 39:44-52
Tamir, Jonathan I; Uecker, Martin; Chen, Weitian et al. (2017) T2 shuffling: Sharp, multicontrast, volumetric fast spin-echo imaging. Magn Reson Med 77:180-195
Vos, Sjoerd B; Aksoy, Murat; Han, Zhaoying et al. (2016) Trade-off between angular and spatial resolutions in in vivo fiber tractography. Neuroimage 129:117-132
Suh, Ga-Young; Choi, Gilwoo; Herfkens, Robert J et al. (2016) Three-Dimensional Modeling Analysis of Visceral Arteries and Kidneys during Respiration. Ann Vasc Surg 34:250-60
Ong, Frank; Lustig, Michael (2016) Beyond Low Rank + Sparse: Multi-scale Low Rank Matrix Decomposition. IEEE J Sel Top Signal Process 10:672-687

Showing the most recent 10 out of 445 publications