This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. At Rib-X Pharmaceuticals, Inc., we employ a structure-based design strategy to find novel chemical classes of antibiotics that target the ribosome. The medical need for new drugs that circumvent established antibiotic resistance mechanisms in bacteria is dire, with many common drug classes such as penicillins and macrolides having high levels of community resistance in many parts of the world. Though many antibiotics target other aspects of the bacterial life cycle, those that bind to the translational apparatus constitute a majority of use. The central player in translation is the ribosome, a 2.5MDa macromolecular complex that uniquely catalyzes the synthesis of proteins in all organisms that has been the target of many antibiotics, both natural and synthetic. Using our constantly improving knowledge of important drug-RNA binding interactions, we are currently pursuing the design of additional next generation antibiotics based on different novel molecular scaffolds. For such, we propose to accumulate more structural information using our crystals of H. marismortui 50S bound to novel inhibitors of protein translation synthesized in house. The structural information we obtain from our H. marismortui 50S crystals will be essential for the subsequent design of compounds with increasingly improved drug-like properties within our current programs. Furthermore, the sheer size of the 50S subunit and the myriad of macro-molecular interactions inherent in the translational apparatus, affords many small molecule binding locations that would interfere with translation. A substantial number of these regions are distal to the peptidyl-transferase center and are not well conserved between the archeal and eubacterial kingdoms. Therefore, we also propose to determine the crystal structures of several inhibitors bound to the 50S ribosomal subunit from a Gram-positive bacterium. These structures will allow us to the exploit molecular differences between archeal and eubacterial ribosome, and employ our iterative structure based drug design methodology on these essential yet less well conserved sites.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BCMB-K (40))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Cornell University
Schools of Arts and Sciences
United States
Zip Code
Fallas, Jorge A; Ueda, George; Sheffler, William et al. (2017) Computational design of self-assembling cyclic protein homo-oligomers. Nat Chem 9:353-360
Krotee, Pascal; Rodriguez, Jose A; Sawaya, Michael R et al. (2017) Atomic structures of fibrillar segments of hIAPP suggest tightly mated ?-sheets are important for cytotoxicity. Elife 6:
Dhayalan, Balamurugan; Mandal, Kalyaneswar; Rege, Nischay et al. (2017) Scope and Limitations of Fmoc Chemistry SPPS-Based Approaches to the Total Synthesis of Insulin Lispro via Ester Insulin. Chemistry 23:1709-1716
Bale, Jacob B; Gonen, Shane; Liu, Yuxi et al. (2016) Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 353:389-94
AhYoung, Andrew P; Koehl, Antoine; Vizcarra, Christina L et al. (2016) Structure of a putative ClpS N-end rule adaptor protein from the malaria pathogen Plasmodium falciparum. Protein Sci 25:689-701
Hancock, Stephen P; Stella, Stefano; Cascio, Duilio et al. (2016) DNA Sequence Determinants Controlling Affinity, Stability and Shape of DNA Complexes Bound by the Nucleoid Protein Fis. PLoS One 11:e0150189
Taylor, Noah D; Garruss, Alexander S; Moretti, Rocco et al. (2016) Engineering an allosteric transcription factor to respond to new ligands. Nat Methods 13:177-83
Kattke, Michele D; Chan, Albert H; Duong, Andrew et al. (2016) Crystal Structure of the Streptomyces coelicolor Sortase E1 Transpeptidase Provides Insight into the Binding Mode of the Novel Class E Sorting Signal. PLoS One 11:e0167763
Jorda, J; Leibly, D J; Thompson, M C et al. (2016) Structure of a novel 13 nm dodecahedral nanocage assembled from a redesigned bacterial microcompartment shell protein. Chem Commun (Camb) 52:5041-4
Dhayalan, Balamurugan; Fitzpatrick, Ann; Mandal, Kalyaneswar et al. (2016) Efficient Total Chemical Synthesis of (13) C=(18) O Isotopomers of Human Insulin for Isotope-Edited FTIR. Chembiochem 17:415-20

Showing the most recent 10 out of 402 publications