This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Carbon nanotubes (CNT) are allotropes of carbon. They are extremely thin hollow cylinders made of carbon atoms. Unique mechanical and electrical properties of CNT make them potentially useful in many applications in nanotechnology, electronics, optics and other fields of material science. Recently, they have attracted attention as prospective drug delivery agents, especially in cancer treatment. Leaky blood vessels in tumors cause accumulation of nanoparticles introduced into the bloodstream in the cancerous tissue. Understanding incorporation of organic molecules in carbon nanotubes and delivery of the former can help in designing new drugs and treatment techniques. ACERT published a successful study on control drug release from micro-scale biodegradable microspheres. Studying drug release from nano-materials will be a further implementation of unique opportunities provided by ESR spectroscopy in general and novel technologies being developed in ACERT, such as high resolution ESR microscopy.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BCMB-K (40))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Cornell University
Schools of Arts and Sciences
United States
Zip Code
Pratt, Ashley J; Shin, David S; Merz, Gregory E et al. (2014) Aggregation propensities of superoxide dismutase G93 hotspot mutants mirror ALS clinical phenotypes. Proc Natl Acad Sci U S A 111:E4568-76
Georgieva, Elka R; Borbat, Peter P; Ginter, Christopher et al. (2013) Conformational ensemble of the sodium-coupled aspartate transporter. Nat Struct Mol Biol 20:215-21
Airola, Michael V; Huh, Doowon; Sukomon, Nattakan et al. (2013) Architecture of the soluble receptor Aer2 indicates an in-line mechanism for PAS and HAMP domain signaling. J Mol Biol 425:886-901
Airola, Michael V; Sukomon, Nattakan; Samanta, Dipanjan et al. (2013) HAMP domain conformers that propagate opposite signals in bacterial chemoreceptors. PLoS Biol 11:e1001479
Sun, Yan; Zhang, Ziwei; Grigoryants, Vladimir M et al. (2012) The internal dynamics of mini c TAR DNA probed by electron paramagnetic resonance of nitroxide spin-labels at the lower stem, the loop, and the bulge. Biochemistry 51:8530-41
Yu, Renyuan Pony; Darmon, Jonathan M; Hoyt, Jordan M et al. (2012) High-Activity Iron Catalysts for the Hydrogenation of Hindered, Unfunctionalized Alkenes. ACS Catal 2:1760-1764
Dzikovski, Boris; Tipikin, Dmitriy; Freed, Jack (2012) Conformational distributions and hydrogen bonding in gel and frozen lipid bilayers: a high frequency spin-label ESR study. J Phys Chem B 116:6694-706
Gaffney, Betty J; Bradshaw, Miles D; Frausto, Stephen D et al. (2012) Locating a lipid at the portal to the lipoxygenase active site. Biophys J 103:2134-44
Maeda, Kiminori; Lodge, Matthew T J; Harmer, Jeffrey et al. (2012) Electron tunneling in lithium-ammonia solutions probed by frequency-dependent electron spin relaxation studies. J Am Chem Soc 134:9209-18
Georgieva, Elka R; Roy, Aritro S; Grigoryants, Vladimir M et al. (2012) Effect of freezing conditions on distances and their distributions derived from Double Electron Electron Resonance (DEER): a study of doubly-spin-labeled T4 lysozyme. J Magn Reson 216:69-77

Showing the most recent 10 out of 71 publications