Project 2, which will be new to the UW SBRP, is an epidemiologic investigation of the roles of metals as determinants of the risk, severity, and progression of parkinsonism (PS) among professional welders. Previous epidemiologic and experimental research has demonstrated very plausible links between manganese (Mn) and other metals, individually and in combination, and PS. The study population includes 875 Wisconsin shipyard welders (775 actively employed, 100 retired) and 200 non-exposed shipyard workers with no welding exposure history previously enrolled in an ongoing NEIHS-funded R01 (ES013743;PI: B. Racette;Co-investigators: H. Checkoway, N. Seixas). The new features of this proposed study will be the refinement of exposure assessment to generate quantitative metal-specific levels, and repeated neurological examinations of longitudinal change of PS-related motor function. The scientific objectives of the project are to: 1) estimate dose-response relations between Mn and other metal exposures and PS risk and severity;2) test the hypothesis that these metal exposures are associated with PS progression;3) determine the predictive relations of PS proteomic biomarkers, characterized in Project 3 (Dr. Zhang), with PS risk, severity, and progression;4) test dose-response relations for Mn and other metals with PS proteomic biomarker profiles as indicators of preclinical disease. To achieve these objects, we will perform repeated standardized neurological exams of motor function (Unified Parkinson's Disease Rating Scale Motor Subsection 3 [UPDRS3]) 3 years after enrollment exams for as many study subjects as can be enrolled (~75%). Addionally, in collaboration with Project 3, we will collect plasma samples for assays of proteomics that have been validated as strongly associated with PS for a sample of 150 subjects selected according to baseline UPDRS3 ('normal', borderline PS, probable/definite PS). Data on potentially important confounding factors, especially cigarette smoking and pesticide exposure, will be obtained by questionnaire. This project has great potential to quantify the extent of neurological effects of metals, which are widespread environmental contaminants, and thus could contribute to disease prevention strategies.

Public Health Relevance

Manganese (Mn) and other metals are widespread environmental contaminants, and have been linked with adverse neurological effects, especially parkinsonism (PS). This study will investigate epidemiologic associations between these metals and risk, severity, and progression of PS among professional welders. The findings have great potential to generate important new knowledge for disease prevention.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
Application #
Study Section
Special Emphasis Panel (ZES1-LKB-D)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Washington
United States
Zip Code
Marsillach, Judit; Suzuki, Stephanie M; Richter, Rebecca J et al. (2014) Human valacyclovir hydrolase/biphenyl hydrolase-like protein is a highly efficient homocysteine thiolactonase. PLoS One 9:e110054
Lundin, Jessica I; Checkoway, Harvey; Criswell, Susan R et al. (2014) Screening for early detection of parkinsonism using a self-administered questionnaire: a cross-sectional epidemiologic study. Neurotoxicology 45:232-7
Racette, Brad A (2014) Manganism in the 21st century: the Hanninen lecture. Neurotoxicology 45:201-7
Kang, Jun Won; Doty, Sharon Lafferty (2014) Cometabolic degradation of trichloroethylene by Burkholderia cepacia G4 with poplar leaf homogenate. Can J Microbiol 60:487-90
Costa, Lucio G; de Laat, Rian; Tagliaferri, Sara et al. (2014) A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity. Toxicol Lett 230:282-94
Maryoung, Lindley A; Lavado, Ramon; Schlenk, Daniel (2014) Impacts of hypersaline acclimation on the acute toxicity of the organophosphate chlorpyrifos to salmonids. Aquat Toxicol 152:284-90
Cole, Toby B; Li, Wan-Fen; Co, Aila L et al. (2014) Repeated gestational exposure of mice to chlorpyrifos oxon is associated with paraoxonase 1 (PON1) modulated effects in maternal and fetal tissues. Toxicol Sci 141:409-22
Woods, James S; Heyer, Nicholas J; Russo, Joan E et al. (2014) Genetic polymorphisms affecting susceptibility to mercury neurotoxicity in children: summary findings from the Casa Pia Children's Amalgam clinical trial. Neurotoxicology 44:288-302
Woods, James S; Heyer, Nicholas J; Russo, Joan E et al. (2014) Genetic polymorphisms of catechol-O-methyltransferase modify the neurobehavioral effects of mercury in children. J Toxicol Environ Health A 77:293-312
Stewart, Tessandra; Sui, Yu-Ting; Gonzalez-Cuyar, Luis F et al. (2014) Cheek cell-derived *-synuclein and DJ-1 do not differentiate Parkinson's disease from control. Neurobiol Aging 35:418-20

Showing the most recent 10 out of 381 publications