Remediation of Superfund sites can release nanoscale particles into the environment, along with hazardous vapors. The health effects of these complex mixtures and materials, especially emerging materials produced by the nanotechnology industry, are not sufficiently well understood. It has been hypothesized that the adverse health effects due to exposure to environmental particles (e.g., airborne particulate matter) is, at least in part, due to generation of reactive oxygen species (ROS), but more data are needed to test this mechanism. This project focuses on 3 main areas: (I) using a laboratory combustion system to create complex mixtures of toxic by-products emitted from thermal processing of materials that contain brominated flame retardants;(II) characterizing the generation of reactive oxygen species from nanoscale materials in the environment;and (III) making use of nanotechnology to answer questions that have arisen in earlier studies of nanoparticle toxicity. In the first aim, this project will construct a small, laboratory-scale system to simulate the thermal processing of materials containing brominated flame retardants;the gaseous and particulate by-products of this process will be examined by other projects in this proposal using bioassays for polybrominated diphenyl ethers (PBDEs) and brominated dioxins and furans. In the second aim we will quantitatively measure two of the most important ROS - hydroxyl radical (OH) and hydrogen peroxide (H{2}O{2}) - formed by nanoparticles in a cell-free surrogate lung fluid and, later, in cell cultures. We will also examine how simulated atmospheric reactions alter the ability of nanoparticles to form ROS. In the third aim of this project we will synthesize a range of novel, multi-functional nanoparticles in order to study several questions related to nanomaterial toxicity, in part in conjunction with other projects in the UC Davis Superfund Program.

Public Health Relevance

We will develop and evaluate methods and technologies to detect hazardous substances in the environment, and develop advanced techniques to assess and evaluate the effects of hazardous substances on human health. In addition, our planned work should help in the assessment of the possible effects of nanomaterials on human health, including nanoparticles designed by the UC Davis Superfund Project to detect hazardous substances in the environment.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004699-28
Application #
8659365
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
28
Fiscal Year
2014
Total Cost
$151,354
Indirect Cost
$52,752
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Patchin, Esther Shin; Anderson, Donald S; Silva, Rona M et al. (2016) Size-Dependent Deposition, Translocation, and Microglial Activation of Inhaled Silver Nanoparticles in the Rodent Nose and Brain. Environ Health Perspect 124:1870-1875
Gee, Shirley J; Kennedy, Ivan R; Lee, N Alice et al. (2016) Immunoanalysis for environmental monitoring and human health. Anal Bioanal Chem 408:5959-61
Bahl, Christopher D; Hvorecny, Kelli L; Morisseau, Christophe et al. (2016) Visualizing the Mechanism of Epoxide Hydrolysis by the Bacterial Virulence Enzyme Cif. Biochemistry 55:788-97
Chapman, Christopher A R; Chen, Hao; Stamou, Marianna et al. (2016) Mechanisms of Reduced Astrocyte Surface Coverage in Cortical Neuron-Glia Co-cultures on Nanoporous Gold Surfaces. Cell Mol Bioeng 9:433-442
Das, Gautom K; Anderson, Donald S; Wallis, Chris D et al. (2016) Novel multi-functional europium-doped gadolinium oxide nanoparticle aerosols facilitate the study of deposition in the developing rat lung. Nanoscale 8:11518-30
Ahn, Ki Chang; Ranganathan, Anupama; Bever, Candace S et al. (2016) Detection of the Antimicrobial Triclosan in Environmental Samples by Immunoassay. Environ Sci Technol 50:3754-61
Ronjat, Michel; Feng, Wei; Dardevet, Lucie et al. (2016) In cellulo phosphorylation induces pharmacological reprogramming of maurocalcin, a cell-penetrating venom peptide. Proc Natl Acad Sci U S A 113:E2460-8
Wu, Xianai; Yang, Jun; Morisseau, Christophe et al. (2016) 3,3',4,4',5-Pentachlorobiphenyl (PCB 126) Decreases Hepatic and Systemic Ratios of Epoxide to Diol Metabolites of Unsaturated Fatty Acids in Male Rats. Toxicol Sci 152:309-22
Croes, Kim; Debaillie, Pieterjan; Van den Bril, Bo et al. (2016) Assessment of estrogenic activity in PM₁₀ air samples with the ERE-CALUX bioassay: Method optimization and implementation at an urban location in Flanders (Belgium). Chemosphere 144:392-8
Ren, Qian; Ma, Min; Ishima, Tamaki et al. (2016) Gene deficiency and pharmacological inhibition of soluble epoxide hydrolase confers resilience to repeated social defeat stress. Proc Natl Acad Sci U S A 113:E1944-52

Showing the most recent 10 out of 1043 publications