PROJECT 4 Many Superfund (SF) chemicals (e.g., PAHs, PCBs, Chlorinated solvents) have been reported to induce reactive oxygen species (ROS) in several cell types. Preliminary studies suggest that most of the ROS induced by SF chemicals originates from the mitochondria and that CCl4-induced cardiomyocyte cell death is partly caused by impaired proteasome activity. The hypothesis that chronic exposure to xenobiotics leads to cellular dysfunction and cell death mainly via mitochondrial oxidative stress (MOS) will be tested. MOS results in excessive production of ROS, increased levels of oxidized mitochondrial proteins, lipids, and DNA, decreased ATP levels, and depolarized mitochondrial membrane potential. Project 4 will further explore whether MOS- related increases in ROS levels affects several cellular pathways, including cellular proteostasis, apoptosis, endoplasmic reticulum (ER) function, and fibrosis. Moreover, preliminary data generated by the research team suggests that nonsteroidal anti-inflammatory drugs (NSAIDs) produce cardiotoxicity by MOS and impaired proteostasis. Since NSAIDs, such as diclofenac, are designed to be bioactive and bioaccumulate in animals, such as fish, it is very likely that these compounds would pose a larger problem than many current SF chemicals in the near future. Among the project aims is to investigate the effects of drug (diclofenac)-SF chemical mixtures. These hypotheses will be tested in cell cultures and chronic animal models. The research team will develop cell-based assays to evaluate the mechanistic basis of xenobiotics effects on MOS and proteostasis (with Core A, Core B and Project 5). This project will evaluate the effects of chronic exposure to xenobiotics on increased MOS, apoptosis, fibrosis, heart damage and associated alterations of plasma oxidized protein levels (with Core A, and B), and develop methods to monitor MOS and impaired proteostasis from chronic exposure to chemicals (with Project 1, 2 and 3 as well as Core A and B). The long term goal of this work is to develop a high-content and medium throughput bioassay to test the potentials of SF chemicals to cause MOS and proteostasis, and obtain a biomarker of MOS associated biological effects for bio-fluid analysis. Overall, this project will investigate a novel hypothesis that current SF chemicals, as well as potential future SF chemicals, cause cellular dysfunction mainly via MOS.

Public Health Relevance

PROJECT 4 This project will investigate the molecular mechanisms of chronic exposure to Superfund (SF) chemicals on mitochondrial oxidative stress (MOS) and proteasome dysfunction, which can lead to fibrosis, cell death and organ damage. The Specific Aims of this project will directly test the novel hypothesis that oxidized proteins and impaired proteasome and immunoproteasome activities may represent a surrogate biomarker for MOS following chronic xenobiotic exposure.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
2P42ES004699-29A1
Application #
9259777
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2017-07-01
Budget End
2018-03-31
Support Year
29
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Harris, Todd R; Kodani, Sean; Rand, Amy A et al. (2018) Celecoxib Does Not Protect against Fibrosis and Inflammation in a Carbon Tetrachloride-Induced Model of Liver Injury. Mol Pharmacol 94:834-841
Bever, Candace S; Rand, Amy A; Nording, Malin et al. (2018) Effects of triclosan in breast milk on the infant fecal microbiome. Chemosphere 203:467-473
Zheng, Jing; McKinnie, Shaun M K; El Gamal, Abrahim et al. (2018) Organohalogens Naturally Biosynthesized in Marine Environments and Produced as Disinfection Byproducts Alter Sarco/Endoplasmic Reticulum Ca2+ Dynamics. Environ Sci Technol 52:5469-5478
Lakkappa, Navya; Krishnamurthy, Praveen T; Yamjala, Karthik et al. (2018) Evaluation of antiparkinson activity of PTUPB by measuring dopamine and its metabolites in Drosophila melanogaster: LC-MS/MS method development. J Pharm Biomed Anal 149:457-464
Guedes, A G P; Aristizabal, F; Sole, A et al. (2018) Pharmacokinetics and antinociceptive effects of the soluble epoxide hydrolase inhibitor t-TUCB in horses with experimentally induced radiocarpal synovitis. J Vet Pharmacol Ther 41:230-238
Heikenfeld, J; Jajack, A; Rogers, J et al. (2018) Wearable sensors: modalities, challenges, and prospects. Lab Chip 18:217-248
Minaz, Nathani; Razdan, Rema; Hammock, Bruce D et al. (2018) An inhibitor of soluble epoxide hydrolase ameliorates diabetes-induced learning and memory impairment in rats. Prostaglandins Other Lipid Mediat 136:84-89
Lassabe, Gabriel; Kramer, Karl; Hammock, Bruce D et al. (2018) Noncompetitive Homogeneous Detection of Small Molecules Using Synthetic Nanopeptamer-Based Luminescent Oxygen Channeling. Anal Chem 90:6187-6192
?ertíková Chábová, V?ra; Kujal, Petr; Škaroupková, Petra et al. (2018) Combined Inhibition of Soluble Epoxide Hydrolase and Renin-Angiotensin System Exhibits Superior Renoprotection to Renin-Angiotensin System Blockade in 5/6 Nephrectomized Ren-2 Transgenic Hypertensive Rats with Established Chronic Kidney Disease. Kidney Blood Press Res 43:329-349
Kodani, Sean D; Bhakta, Saavan; Hwang, Sung Hee et al. (2018) Identification and optimization of soluble epoxide hydrolase inhibitors with dual potency towards fatty acid amide hydrolase. Bioorg Med Chem Lett 28:762-768

Showing the most recent 10 out of 1149 publications