The inorganic metalloid arsenic, organic chlorinated solvents (e. g. trichloroethene (TCE)) and aromatic hydrocarbons (e. g. benzene, toluene, ethylbenzene and xylenes (BTEX)) are frequently detected as a mixture of contaminants in groundwater aquifers. Their presence in drinking water supplies represents a hazard to public health and the environment. Currently, arsenic ranks No.1 on the ATSDR Priority List of Hazardous Substances and has been reported as a problem at 917 Superfund National Priorities List sites. Due to its common co-occurrence with TCE and BTEX at these sites, it is important to understand the effects of potential remediation strategies that target only one contaminant class on the fate and transport of the other contaminants. The objective of this project is to apply systems biology approaches to study interactions within microbial communities involved in the bioremediation of groundwater mixtures containing arsenic species in combination with TCE and BTEX.
We aim to enrich and study microbial communities that can concurrently reduce the bioavailability of arsenic and degrade the co-contaminants and specifically address complex problems arising from the presence of chemical mixtures at hazardous waste sites. Bioremediation processes that biostimulate fermenting microorganisms by injection of organics into groundwater aquifers to promote the dechlorination of TCE are likely to generate soluble arsenic species, leading to the production of new and more significant groundwater (GW) contaminants. Similarly, BTEX releases into aquifers result in the rapid depletion of oxygen and other electron acceptors, leading to arsenic mobilization. A key challenge in achieving effective bioremediation without mobilizing arsenic is understanding the multi-scale complexity of subsurface microbial communities that could facilitate useful transformations of arsenic, while also targeting the degradation of organic co-contaminants. We hypothesize that understanding the structure, function and syntrophic interactions of microbial communities involved in arsenic transformations can lead to optimized simultaneous bioremediation of the metalloid arsenic as well as chlorinated solvents and aromatic hydrocarbons. To test this hypothesis, we will enrich and construct cultures as well as co-contaminant transformations and apply meta-omics based approaches to characterize interactions within these communities. We will then evaluate the responses of these enrichments and consortia to perturbations and various co-contaminant exposures (aims 1-3). We will subsequently develop models to provide predictive input to new designs for effective bioremediation of these mixtures (aim 4). from contaminated GW and sediments that are capable of arsenic cycling The knowledge and models developed from this research will be valuable to provide guidance to practitioners of bioremediation to improve operation and practice in the common occurrence of co-located mixtures of arsenic, solvents and aromatics.

Public Health Relevance

Arsenic, chlorinated solvents and aromatic hydrocarbons are frequently detected as mixtures in groundwater aquifers that represent a hazard to public health and the environment. This project will apply systems biology approaches to study interactions within microbial communities involved in the bioremediation of groundwater mixtures containing arsenic species in combination with other chemicals.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004705-30
Application #
9520127
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2018-04-01
Budget End
2019-03-31
Support Year
30
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of California Berkeley
Department
Type
DUNS #
124726725
City
Berkeley
State
CA
Country
United States
Zip Code
94704
Smith, Allan H; Marshall, Guillermo; Roh, Taehyun et al. (2018) Lung, Bladder, and Kidney Cancer Mortality 40?Years After Arsenic Exposure Reduction. J Natl Cancer Inst 110:241-249
Castriota, Felicia; Acevedo, Johanna; Ferreccio, Catterina et al. (2018) Obesity and increased susceptibility to arsenic-related type 2 diabetes in Northern Chile. Environ Res 167:248-254
Rothman, Nathaniel; Zhang, Luoping; Smith, Martyn T et al. (2018) Formaldehyde, Hematotoxicity, and Chromosomal Changes-Response. Cancer Epidemiol Biomarkers Prev 27:120-121
Yik-Sham Chung, Clive; Timblin, Greg A; Saijo, Kaoru et al. (2018) Versatile Histochemical Approach to Detection of Hydrogen Peroxide in Cells and Tissues Based on Puromycin Staining. J Am Chem Soc 140:6109-6121
Rappaport, Stephen M (2018) Redefining environmental exposure for disease etiology. NPJ Syst Biol Appl 4:30
Tachachartvanich, Phum; Sangsuwan, Rapeepat; Ruiz, Heather S et al. (2018) Assessment of the Endocrine-Disrupting Effects of Trichloroethylene and Its Metabolites Using in Vitro and in Silico Approaches. Environ Sci Technol 52:1542-1550
Guyton, Kathryn Z; Rieswijk, Linda; Wang, Amy et al. (2018) Key Characteristics Approach to Carcinogenic Hazard Identification. Chem Res Toxicol :
Roh, Taehyun; Steinmaus, Craig; Marshall, Guillermo et al. (2018) Age at Exposure to Arsenic in Water and Mortality 30-40 Years After Exposure Cessation. Am J Epidemiol 187:2297-2305
Daniels, Sarah I; Chambers, John C; Sanchez, Sylvia S et al. (2018) Elevated Levels of Organochlorine Pesticides in South Asian Immigrants Are Associated With an Increased Risk of Diabetes. J Endocr Soc 2:832-841
Guyton, Kathryn Z; Rusyn, Ivan; Chiu, Weihsueh A et al. (2018) Application of the key characteristics of carcinogens in cancer hazard identification. Carcinogenesis 39:614-622

Showing the most recent 10 out of 629 publications