The essence of the University of Arizona Superfund Basic Research Program (UA SBRP) renewal application is hazardous waste risk and remediation In the US Southwest. The theme of this Program Is to support development of a risk assessment process for metal and organic contaminants through toxicologic and hydrogeologic studies and innovative remediation technologies. Our application emphasizes hazardous waste issues in the Southwest (and Mexican Border) associated with the distinctive arid nature of the environment. Importantly, the outcomes of these studies can be extrapolated to arid environments around the world. Currently 1/3 of land surfaces are arid or semi arid and this proportion is expected to increase due to climate change. This is exemplified by the toxicants we study, metals (arsenic) and halogenated hydrocarbons, which are major contaminants in our region but also of significant concern throughout the world. Our Program consists of 9 research projects - five biomedical projects and four environmental sciences projects. Many of the projects are collaborative involving multiple disciplines. The biomedical projects are examining the mechanism of arsenic toxicity in target tissues, factors that affect the susceptibility of populations to arsenic-induced toxicity, and potential therapeutic approaches. The environmental sciences projects are investigating how hazardous wastes (arsenic, TCE/PCE) can be optimally characterized for risk assessment and remediation, and developing innovative techniques for assessing exposure and waste containment in our arid Southwest environment. These research projects are supported by five Cores that: administer the Program, translate the results to stakeholders, provide research services, promote unique outreach efforts to ethnic communities along the Border, and support graduate student training. This project will contribute to our understanding of toxicology and remediation of hazardous wastes nationally and internationally.

Public Health Relevance

This application emphasizes hazardous waste issues in the Southwest associated with the distinctive arid nature of the environment. Water is precious in arid environments and dust is ever present. Contamination of our water or soil by hazardous waste affects broad populations. We must assess the health risks, containment, and remediation of ubiquitous contaminants [metals (arsenic) and halogenated solvents] present in the arid Southwest and use this information for handling these contaminants at other sites.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004940-23
Application #
8253751
Study Section
Special Emphasis Panel (ZES1-LWJ-M (O1))
Program Officer
Carlin, Danielle J
Project Start
1997-04-01
Project End
2015-03-31
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
23
Fiscal Year
2012
Total Cost
$2,799,021
Indirect Cost
$1,069,050
Name
University of Arizona
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Youn, Jong-Sang; Csavina, Janae; Rine, Kyle P et al. (2016) Hygroscopic Properties and Respiratory System Deposition Behavior of Particulate Matter Emitted By Mining and Smelting Operations. Environ Sci Technol 50:11706-11713
Olivares, Christopher I; Sierra-Alvarez, Reyes; Abrell, Leif et al. (2016) Zebrafish embryo toxicity of anaerobic biotransformation products from the insensitive munitions compound 2,4-dinitroanisole. Environ Toxicol Chem 35:2774-2781
Rehman, Zahir Ur; Khan, Sardar; Qin, Kun et al. (2016) Quantification of inorganic arsenic exposure and cancer risk via consumption of vegetables in southern selected districts of Pakistan. Sci Total Environ 550:321-9
Zhong, Hua; Liu, Guansheng; Jiang, Yongbing et al. (2016) Effect of low-concentration rhamnolipid on transport of Pseudomonas aeruginosa ATCC 9027 in an ideal porous medium with hydrophilic or hydrophobic surfaces. Colloids Surf B Biointerfaces 139:244-8
Rodriguez-Freire, Lucia; Moore, Sarah E; Sierra-Alvarez, Reyes et al. (2016) Arsenic remediation by formation of arsenic sulfide minerals in a continuous anaerobic bioreactor. Biotechnol Bioeng 113:522-30
Beamer, Paloma I; Klimecki, Walter T; Loh, Miranda et al. (2016) Association of Children's Urinary CC16 Levels with Arsenic Concentrations in Multiple Environmental Media. Int J Environ Res Public Health 13:
Honeker, Linnea K; Root, Robert A; Chorover, Jon et al. (2016) Resolving colocalization of bacteria and metal(loid)s on plant root surfaces by combining fluorescence in situ hybridization (FISH) with multiple-energy micro-focused X-ray fluorescence (ME μXRF). J Microbiol Methods 131:23-33
Ezeh, Peace C; Xu, Huan; Lauer, Fredine T et al. (2016) Monomethylarsonous acid (MMA+3) Inhibits IL-7 Signaling in Mouse Pre-B Cells. Toxicol Sci 149:289-99
Gil-Loaiza, Juliana; White, Scott A; Root, Robert A et al. (2016) Phytostabilization of mine tailings using compost-assisted direct planting: Translating greenhouse results to the field. Sci Total Environ 565:451-61
Olivares, Christopher I; Wang, Junqin; Luna, Carlos D Silva et al. (2016) Continuous treatment of the insensitive munitions compound N-methyl-p-nitro aniline (MNA) in an upflow anaerobic sludge blanket (UASB) bioreactor. Chemosphere 144:1116-22

Showing the most recent 10 out of 425 publications